1982 AHSME Problems/Problem 27

Revision as of 01:55, 7 September 2021 by MRENTHUSIASM (talk | contribs) (Created page with "== Problem == Suppose <math>z=a+bi</math> is a solution of the polynomial equation <cmath>c_4z^4+ic_3z^3+c_2z^2+ic_1z+c_0=0,</cmath> where <math>c_0, c_1, c_2, c_3, a,</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Suppose $z=a+bi$ is a solution of the polynomial equation \[c_4z^4+ic_3z^3+c_2z^2+ic_1z+c_0=0,\] where $c_0, c_1, c_2, c_3, a,$ and $b$ are real constants and $i^2=-1.$ Which of the following must also be a solution?

$\textbf{(A)}\ -a-bi\qquad  \textbf{(B)}\ a-bi\qquad  \textbf{(C)}\ -a+bi\qquad  \textbf{(D)}\ b+ai \qquad  \textbf{(E)}\ \text{none of these}$

Solution

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png