1982 AHSME Problems/Problem 19
Revision as of 18:12, 12 September 2021 by MRENTHUSIASM (talk | contribs) (Created page with "== Problem == Let <math>f(x)=|x-2|+|x-4|-|2x-6|</math> for <math>2 \leq x\leq 8</math>. The sum of the largest and smallest values of <math>f(x)</math> is <math>\textbf {(A)...")
Problem
Let for . The sum of the largest and smallest values of is
Solution
Note that at one of the three absolute values is equal to
Without using absolute values, we rewrite as a piecewise function: which simplify to The graph of is shown below.
DIAGRAM NEEDED
The largest value of is and the smallest value of is So, their sum is
~MRENTHUSIASM
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.