1982 AHSME Problems/Problem 23

Revision as of 02:10, 15 September 2021 by MRENTHUSIASM (talk | contribs)

Problem

The lengths of the sides of a triangle are consecutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is

$\textbf{(A)}\ \frac{3}{4}\qquad \textbf{(B)}\ \frac{7}{10}\qquad \textbf{(C)}\ \frac{2}{3}\qquad \textbf{(D)}\ \frac{9}{14}\qquad \textbf{(E)}\ \text{none of these}$

Solution 1

In $\triangle ABC,$ let $a=n,b=n+1,c=n+2,$ and $\angle A=\theta$ for some positive integer $n.$ We are given that $\angle C=2\theta,$ and we need $\cos\theta.$

We apply the Law of Cosines to solve for $\cos\angle A:$ \[\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.\]

Let the brackets denote areas. We write $[ABC]$ in terms of $\sin\angle A$ and $\sin\angle C,$ respectively: \[[ABC]=\frac12 bc\sin\theta=\frac12 ab\sin(2\theta).\] Recall that $\sin(2\theta)=2\sin\theta\cos\theta$ holds for all $\theta.$ Equating the last two expressions and then simplifying, we have \[\cos\theta=\frac{c}{2a}=\frac{n+2}{2n}.\] Equating the expressions for $\cos\theta,$ we get \[\frac{n+5}{2(n+2)}=\frac{n+2}{2n},\] from which $n=4.$ By substitution, the answer is $\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.$

~MRENTHUSIASM

Solution 2

This solution uses the same variable definitions as Solution 1 does. Moreover, we conclude that $\cos\theta=\frac{n+5}{2(n+2)}$ from the second paragraph of Solution 1.

Let the brackets denote areas. We write $[ABC]$ using $\sin\angle A$ and Heron's Formula, respectively: \[[ABC]=\frac12 bc\sin\theta=\sqrt{s(s-a)(s-b)(s-c)},\] where $s=\frac{a+b+c}{2}$ is the semiperimeter of $\triangle ABC.$

Equating the last two expressions and then simplifying, we have \[\sin\theta=\frac{2\sqrt{s(s-a)(s-b)(s-c)}}{bc}=\frac{(n+1)\sqrt{3(n+3)(n-1)}}{2(n+2)}.\] Recall that $\sin^2\theta+\cos^2\theta=1$ holds for all $\theta.$

~MRENTHUSIASM

Solution 3

This solution uses the same variable definitions as Solution 1 does. Moreover, we conclude that $\cos\theta=\frac{n+5}{2(n+2)}$ from the second paragraph of Solution 1.

We apply the Law of Cosines to solve for $\cos\angle C:$ \[\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.\] By the Double-Angle Formula $\cos(2\theta)=2\cos^2\theta-1,$ we have \[2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},\] from which $n=-3,-\frac12,4.$ Recall that $n$ is a positive integer, so $n=4.$ By substitution, the answer is $\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.$

~MRENTHUSIASM

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png