2021 Fall AMC 12A Problems/Problem 25
Problem
Let be an odd integer, and let denote the number of quadruples of distinct integers with for all such that divides . There is a polynomial such that for all odd integers . What is
Solution 1 (Complete Residue System)
For a fixed value of there is a total of possible ordered quadruples
Let We claim that exactly of these ordered quadruples satisfy that divides
Since we conclude that is the complete residue system modulo for all integers
Given any ordered quadruple in modulo it follows that exactly one of these ordered quadruples satisfy that divides We conclude that so By Vieta's Formulas, we get
~MRENTHUSIASM
Solution 2 (Educated Guess)
Note that you see numbers with absolute value and in the answer choices. What is special about those numbers? Well, you should notice that they are the coefficients of the polynomial when expanded (if you've already memorized this). Then, you can probably guess the polynomial is some form of whether negative or positive. Since is asked, the answer should be reasoned out as
Furthermore, you can gain confidence in your guess since that is the only answer choice with absolute value
~fidgetboss_4000
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.