2006 AIME II Problems/Problem 3

Revision as of 18:06, 25 September 2007 by Azjps (talk | contribs) (See also: ii)

Problem

Let $P$ be the product of the first $100$ positive odd integers. Find the largest integer $k$ such that $P$ is divisible by $3^k .$

Solution

Note that the product of the first $100$ positive odd integers can be written as $1\cdot 3\cdot 5\cdot 7\cdots 195\cdot 197\cdot 199=\frac{1\cdot 2\cdots200}{2\cdot4\cdots200} = \frac{200!}{2^{100}\cdot 100!}$

Hence, we seek the number of threes in $200!$ decreased by the number of threes in $100!.$

There are

$\left\lfloor \frac{200}{3}\right\rfloor+\left\lfloor\frac{200}{9}\right\rfloor+\left\lfloor \frac{200}{27}\right\rfloor+\left\lfloor\frac{200}{81}\right\rfloor =66+22+7+2=97$

threes in $200!$ and

$\left\lfloor \frac{100}{3}\right\rfloor+\left\lfloor\frac{100}{9}\right\rfloor+\left\lfloor \frac{100}{27}\right\rfloor+\left\lfloor\frac{100}{81}\right\rfloor=33+11+3+1=48$

threes in $100!$

Therefore, we have a total of $97-48=049$ threes.

For more information, see also prime factorizations of a factorial.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions