2022 AMC 10A Problems/Problem 22

Revision as of 21:08, 13 November 2022 by MRENTHUSIASM (talk | contribs)

Problem

Suppose that $13$ cards numbered $1, 2, 3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1, 2, 3$ are picked up on the first pass, $4$ and $5$ on the second pass, $6$ on the third pass, $7, 8, 9, 10$ on the fourth pass, and $11, 12, 13$ on the fifth pass. For how many of the $13!$ possible orderings of the cards will the $13$ cards be picked up in exactly two passes?

[asy] size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("7", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("11", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("8", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("6", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("4", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("5", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("9", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("12", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("1", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("13", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("10", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("2", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("3", (37,1.5)); [/asy] $\textbf{(A) } 4082 \qquad \textbf{(B) } 4095 \qquad \textbf{(C) } 4096 \qquad \textbf{(D) } 8178 \qquad \textbf{(E) } 8191$

Solution

Solution 1 (Casework)

For $1\leq n\leq 12,$ suppose that cards $1, 2, 3, \ldots, n$ are picked up on the first pass. It follows that cards $n+1,n+2,\ldots,13$ are picked up on the second pass.

Once we pick the spots for the cards on the first pass, there is only one way to arrange all $\boldsymbol{13}$ cards.

For each value of $n,$ there are $\binom{13}{n}-1$ ways to pick the $n$ spots for the cards on the first pass: We exclude the arrangement [asy] size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("1", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("2", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("3", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("4", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("5", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("6", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("7", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("8", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("9", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("10", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("11", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("12", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("13", (37,1.5)); [/asy] Therefore, the answer is \[\sum_{k=1}^{13}\left[\binom{13}{k}-1\right] = \left[\sum_{k=1}^{13}\binom{13}{k}\right]-13 = \left[\sum_{k=0}^{13}\binom{13}{k}\right]-14 = 2^{13} - 14 = \boxed{\textbf{(D) } 8178}.\]

~MRENTHUSIASM

Solution 2 (Casework)

Since the $13$ cards are picked up in two passes, the first pass must pick up the first $n$ cards and the second pass must pick up the remaining cards $m$ through $13$. Also note that if $m$, which is the card that is numbered one more than $n$, is placed before $n$, then $m$ will not be picked up on the first pass since cards are picked up in order. Therefore we desire $m$ to be placed before $n$ to create a second pass, and that after the first pass, the numbers $m$ through $13$ are lined up in order from least to greatest.

To construct this, $n$ cannot go in the $n$th position because all cards $1$ to $n-1$ will have to precede it and there will be no room for $m$. Therefore $n$ must be in slots $n+1$ to $13$. Let's do casework on which slot $n$ goes into to get a general idea for how the problem works.

$\textbf{Case 1:}$ With $n$ in spot $n+1$, there are $n$ available slots before $n$, and there are $n-1$ cards preceding $n$. Therefore the number of ways to reserve these slots for the $n-1$ cards is $\binom{n}{n-1}$. Then there is only $1$ way to order these cards (since we want them in increasing order). Then card $m$ goes into whatever slot is remaining, and the $13-m$ cards are ordered in increasing order after slot $n+1$, giving only $1$ way. Therefore in this case there are $\binom{n}{n-1}$ possibilities.

$\textbf{Case 2:}$ With $n$ in spot $n+2$, there are $n+1$ available slots before $n$, and there are $n-1$ cards preceding $n$. Therefore the number of ways to reserve slots for these cards are $\binom{n+1}{n-1}$. Then there is one way to order these cards. Then cards $m$ and $m+1$ must go in the remaining two slots, and there is only one way to order them since they must be in increasing order. Finally, cards $m+2$ to $13$ will be ordered in increasing order after slot $n+1$, which yields $1$ way. Therefore, this case has $\binom{n+1}{n-1}$ possibilities.

I think we can see a general pattern now. With $n$ in slot $x$, there are $x-1$ slots to distribute to the previous $n-1$ cards, which can be done in $\binom{x-1}{n-1}$ ways. Then the remaining cards fill in in just $1$ way. Since the cases of $n$ start in slot $n+1$ and end in slot $13$, this sum amounts to: \[\binom{n}{n-1}+\binom{n+1}{n-1}+\binom{n+2}{n-1} + \cdots + \binom{12}{n-1}\] for any $n$.

Hmmm ... where have we seen this before?

We use wishful thinking to add a term of $\binom{n-1}{n-1}$: \[\binom{n-1}{n-1}+\binom{n}{n-1}+\binom{n+1}{n-1}+\binom{n+2}{n-1} + \cdots + \binom{12}{n-1}\]

This is just the hockey stick identity! Applying it, this expression is equal to $\binom{13}{n}$. However, we added an extra term, so subtracting it off, the total number of ways to order the $13$ cards for any $n$ is \[\binom{13}{n}-1\]

Finally, to calculate the total for all $n$, we sum from $n=0$ to $13$. This yields us:

\[\sum_{n=0}^{13} \binom{13}{n}-1 \implies \sum_{n=0}^{13} \binom{13}{n} - \sum_{n=0}^{13} 1\] \[\implies 2^{13} - 14 = 8192 - 14 = 8178 = \boxed{\textbf{(D) } 8178}.\]

~KingRavi

Solution 3 (Recursion)

To solve this problem, we can use recursion on $n$. Let $A_n$ be the number of arrangements for $n$ numbers. Now, let's look at how these arrangements are formed by case work on the first number $a_1$.

If $a_1 = 1$, the remaining $n-1$ numbers from $2$ to $n$ are arranged in the same way just like number 1 to $n-1$ in the case of $n-1$ numbers. So there are $A_{n-1}$ arrangements.

If $a_1 = 2$, then we need to choose 1 position from position 2 to $n-1$ to put 1, and all remaining numbers must be arranged in increasing order, so there are $\binom{n-1}{1}$ such arrangements.

If $a_1 = k$, then we need to choose $k-1$ positions from position 2 to $n-1$ to put $1, 2,\cdots k-1$, and all remaining numbers must be arranged in increasing order, so there are $\binom{n-1}{k-1}$ such arrangements.

So we can write \[A_n = A_{n-1} + \binom{n-1}{1} + \binom{n-1}{2} + \cdots + \binom{n-1}{n-1}\] which can be simplified to \[A_n = A_{n-1} + 2^{n-1} - 1\] We can solve this recursive sequence by summing up $n-1$ lines of the recursive formula \[A_n - A_{n-1} = 2^{n-1} - 1\] \[A_{n-1} - A_{n-2} = 2^{n-2} - 1\] \[\cdots\] \[A_2 - A_{1} = 2^{1} - 1\] to get \[A_n - A_1 = \sum_{k=1}^{n-1} (2^k - 1) = 2^n - 2 - (n-1) = 2^n - n - 1\] since $A_1=0$, we have \[A_n = 2^n - n - 1\] and $A_{13} = 2^{13} - 14 = \boxed{\textbf{(D) } 8178}$.

So the answer is $\boxed{D}$

-- Dan Li

Solution 4 (Engineer's Induction)

When we have $3$ cards arranged in a row, after listing out all possible arrangements, we see that we have $4$ ones: $(1, 3, 2), (2, 1, 3,) (2, 3, 1),$ and $(3, 1, 2)$. When we have $4$ cards, we find $11$ possible arrangements: $(1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (2, 1, 3, 4), (2, 3, 1, 4), (2, 3, 4, 1), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2),$ and $(4, 1, 2, 3).$ Hence, we recognize the pattern that for $n$ cards, we have $2^n - n - 1$ valid arrangements, so our answer is $2^{13} - 13 - 1 = \boxed{\textbf{(D) } 8178}.$ ~eibc

Video Solution by ThePuzzlr

https://youtu.be/p9xNduqTKLM

~ MathIsChess

Video Solution by OmegaLearn (Combinatorial Identities and Overcounting)

https://youtu.be/gW8gPEEHSfU

~ pi_is_3.14

Solution

https://youtu.be/ZGqrs5eg6-s

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png