1956 AHSME Problems/Problem 5

Revision as of 16:12, 14 March 2023 by Megaboy6679 (talk | contribs) (Solution)

Problem #5

A nickel is placed on a table. The number of nickels which can be placed around it, each tangent to it and to two others is:

$\textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 12$

Solution

Arranging the nickels in a hexagonal fashion, we see that only $\boxed{\textbf{(C) }6}$ nickels can be placed around the central nickel.

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png