1999 AHSME Problems/Problem 20
Revision as of 13:00, 21 March 2023 by Countmath1 (talk | contribs)
Contents
[hide]Problem
The sequence satisfies , and, for all , is the arithmetic mean of the first terms. Find .
Solution 1
Let be the arithmetic mean of and . We can then write and for some .
By definition, .
Next, is the mean of , and , which is again .
Realizing this, one can easily prove by induction that .
It follows that . From we get that . And thus .
Solution 2
Let and . Then, , and so on.
Since , for all
Hence, We also know that
Subtracting from we get
~Benedict T (countmath1)
See also
1999 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.