1979 USAMO Problems/Problem 2
Contents
Problem
is the north pole. and are points on a great circle through equidistant from . is a point on the equator. Show that the great circle through and bisects the angle in the spherical triangle (a spherical triangle has great circle arcs as sides).
Hint
Draw a large diagram. A nice, large, and precise diagram. Note that drawing a sphere entails drawing a circle and then a dashed circle (preferably of a different color) perpendicular (in the plane) to the original circle.
Solution
Since is the north pole, we define the Earth with a sphere of radius one in space with and sphere center We then pick point on the sphere and define the as the plane that contains great circle points , , and with the perpendicular to the and in the direction of .
Using this coordinate system and , , and axes where is the angle from the to or latitude on this sphere with
\[\frac{-\pi}{2}\lt \phi \lt \frac{\pi}{2}\] (Error compiling LaTeX. Unknown error_msg)
Since and are points on a great circle through equidistant from , then
Since is a point on the equator, then ~Tomas Diaz
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1979 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.