2023 AMC 10A Problems/Problem 4

Revision as of 15:09, 9 November 2023 by Zhenghua (talk | contribs)

Problem

A quadrilateral has all integer sides lengths, a perimeter of $26$, and one side of length $4$. What is the greatest possible length of one side of this quadrilateral?

\[\textbf{(A)}~9\qquad\textbf{(B)}~10\qquad\textbf{(C)}~11\qquad\textbf{(D)}~12\qquad\textbf{(E)}~13\]

Solution 1

Lets use the triangle inequality. We know that for a triangle, the 2 shorter sides must always be longer than the longest side. Similarly for a convex quadrilateral the shortest 3 sides must always be longer than the longest side. Thus the answer is $\frac{26}{2}-1=13-1=\text{\boxed{(D)12}}$