2024 AMC 8 Problems

Revision as of 17:42, 25 January 2024 by Multpi12 (talk | contribs) (Problem 17)
2024 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the ones digit of \[222,222-22,222-2,222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$

Solution

Problem 2

What is the value of this expression in decimal form? \[\frac{44}{11} + \frac{110}{44} + \frac{44}{1100}\]

$\textbf{(A) } 6.4\qquad\textbf{(B) } 6.504\qquad\textbf{(C) } 6.54\qquad\textbf{(D) } 6.9\qquad\textbf{(E) } 6.94$

Solution

Problem 3

Four squares of side lengths $4$, $7$, $9$, and $10$ units are arranged in increasing size order so that their left edges and bottom edges align. The squares alternate in the color pattern white-gray-white-gray, respectively, as shown in the figure. What is the area of the visible gray region in square units?

[DIAGRAM]

$\textbf{(A)}\ 42 \qquad \textbf{(B)}\ 45 \qquad \textbf{(C)}\ 49 \qquad \textbf{(D)}\ 50 \qquad \textbf{(E)}\ 52$

Solution

Problem 4

When Yunji added all the integers from $1$ to $9$, she mistakenly left out a number. Her incorrect sum turned out to be a square number. What number did Yunji leave out?

$\textbf{(A) } 5\qquad\textbf{(B) } 6\qquad\textbf{(C) } 7\qquad\textbf{(D) } 8\qquad\textbf{(E) } 9$

Solution

Problem 5

Aaliyah rolls two standard 6-sided dice. She notices that the product of the two numbers rolled is a multiple of $6$. Which of the following integers cannot be the sum of the two numbers?

$\textbf{(A) } 5\qquad\textbf{(B) } 6\qquad\textbf{(C) } 7\qquad\textbf{(D) } 8\qquad\textbf{(E) } 9$

Solution

Problem 6

Sergai skated around an ice rink, gliding along different paths. The gray lines in the figures below show foru of the paths labeled $P$, $Q$, $R$, and $S$. What is the sorted order of the four paths from shortest to longest?

[DIAGRAM]

$\textbf{(A)}\ P,Q,R,S \qquad \textbf{(B)}\ P,R,S,Q \qquad \textbf{(C)}\ Q,S,P,R \qquad \textbf{(D)}\ R,P,S,Q \qquad \textbf{(E)}\ R,S,P,Q$

Solution

Problem 7

A $3$x$7$ rectangle is covered without overlap by 3 shapes of tiles: $2$x$2$, $1$x$4$, and $1$x$1$, shown below. What is the minimum possible number of $1$x$1$ tiles used?


(A) $1$ (B) $2$ (C) $3$ (D) $4$ (E) $5$

Problem 8

On Monday Taye has $2. Every day, he either gains $3 or doubles the amount of money he had on the previous day. How many different dollar amounts could Taye have on Thursday, 3 days later?

$\textbf{(A) } 3\qquad\textbf{(B) } 4\qquad\textbf{(C) } 5\qquad\textbf{(D) } 6\qquad\textbf{(E) } 7$

Solution

Problem 10

In January 1980 the Mauna Loa Observatory recorded carbon dioxide (CO_2) levels of 338 ppm (parts per million). Over the years the average CO_2 reading has increased by about 1.1516 ppm each year. What is the expected CO_2 level in ppm in January 2030? Round your answer to the nearest integer.

Solution

xooks rbo 1434 haha team b no states qual

Problem 12

Problem 13

Buzz Bunny is hopping up and down a set of stairs, one step at a time. In how many ways can Buzz start on the ground, make a sequence of $6$ hops, and end up back on the ground? (For example, one sequence of hops is up-up-down-down-up-down.)

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 12$

Solution

Problem 14

Problem 15

Let the letters $F$,$L$,$Y$,$B$,$U$,$G$ represent distinct digits. Suppose $\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y}$ is the greatest number that satisfies the equation

\[8\cdot\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y}=\underline{B}~\underline{U}~\underline{G}~\underline{B}~\underline{U}~\underline{G}.\]

What is the value of $\underline{F}~\underline{L}~\underline{Y}+\underline{B}~\underline{U}~\underline{G}$?

$\textbf{(A)}\ 1089 \qquad \textbf{(B)}\ 1098 \qquad \textbf{(C)}\ 1107 \qquad \textbf{(D)}\ 1116 \qquad \textbf{(E)}\ 1125$

Solution

Problem 16

Minh enters the numbers $1$ through $81$ into the cells of a $9 \times 9$ grid in some order. She calculates the product of the numbers in each row and column. What is the least number of rows and columns that could have a product divisible by $3$?

$\textbf{(A) } 8\qquad\textbf{(B) } 9\qquad\textbf{(C) } 10\qquad\textbf{(D) } 11\qquad\textbf{(E) } 12$

Solution

Problem 17

Problem 18

Problem 19

Jordan owns 15 pairs of sneakers. Three fifths of the pairs are red and the rest are white. Two thirds of the pairs are high-top and the rest are low-top. The red high-top sneakers make up a fraction of the collection. What is the least possible value of this fraction?

$\textbf{(A) } 0\qquad\textbf{(B) } \dfrac{1}{5} \qquad\textbf{(C) } \dfrac{4}{15} \qquad\textbf{(D) } \dfrac{1}{3} \qquad\textbf{(E) } \dfrac{2}{5}$

Solution

Problem 20

95070B for bad

Problem 21

A group of frogs (called an army) is living in a tree. A frog turns green when in the shade and turns yellow when in the sun. Initially, the ratio of green to yellow frogs was $3 : 1$. Then $3$ green frogs moved to the sunny side and $5$ yellow frogs moved to the shady side. Now the ratio is $4 : 1$. What is the difference between the number of green frogs and the number of yellow frogs now?

$\textbf{(A) } 10\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 20\qquad\textbf{(E) } 24$

Solution

Problem 22

Problem 23

Rodrigo is drawing lines on the coordinate plane, and counting how many unit squares they go through. He draws a line with endpoints $(2000,3000)$ and $(5000,8000).$ How many unit squares does this segment go through?

$\textbf{(A) }6000\qquad\textbf{(B) }6500\qquad\textbf{(C) }7000\qquad\textbf{(D) }7500\qquad\textbf{(E) }8000$

Solution

Problem 24

Jean has made a piece of stained glass art in the shape of two mountains, as shown in the figure below. One mountain peak is $8$ feet high while the other peak is $12$ feet high. Each peak forms a $90^\circ$ angle, and the straight sides form a $45^\circ$ angle with the ground. The artwork has an area of $183$ square feet. The sides of the mountain meet at an intersection point near the center of the artwork, $h$ feet above the ground. What is the value of $h?$

[asy] unitsize(.3cm); filldraw((0,0)--(8,8)--(11,5)--(18,12)--(30,0)--cycle,gray(0.7),linewidth(1)); draw((-1,0)--(-1,8),linewidth(.75)); draw((-1.4,0)--(-.6,0),linewidth(.75)); draw((-1.4,8)--(-.6,8),linewidth(.75)); label("$8$",(-1,4),W); label("$12$",(31,6),E); draw((-1,8)--(8,8),dashed); draw((31,0)--(31,12),linewidth(.75)); draw((30.6,0)--(31.4,0),linewidth(.75)); draw((30.6,12)--(31.4,12),linewidth(.75)); draw((31,12)--(18,12),dashed); label("$45^{\circ}$",(.75,0),NE,fontsize(10pt)); label("$45^{\circ}$",(29.25,0),NW,fontsize(10pt)); draw((8,8)--(7.5,7.5)--(8,7)--(8.5,7.5)--cycle); draw((18,12)--(17.5,11.5)--(18,11)--(18.5,11.5)--cycle); draw((11,5)--(11,0),dashed); label("$h$",(11,2.5),E); [/asy]

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 4\sqrt{2} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 5\sqrt{2}$

Solution

Problem 25

A small airplane has $4$ rows of seats with $3$ seats in each row. Eight passengers have boarded the plane and are distributed randomly among the seats. A married couple is next to board. What is the probability there will be $2$ adjacent seats in the same row for the couple?

[DIAGRAM]

$\textbf{(A)}\ \dfrac{8}{15} \qquad \textbf{(B)}\ \dfrac{32}{55} \qquad \textbf{(C)}\ \dfrac{20}{33} \qquad \textbf{(D)}\ \dfrac{34}{55} \qquad \textbf{(E)}\ \dfrac{8}{11}$

Solution

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
2023 AMC 8
Followed by
2025 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions