2024 AIME II Problems/Problem 13
Problem
Let be a 13th root of unity. Find the remainder when is divided by 1000.
Solution 1
Now, we consider the polynomial whose roots are the 13th roots of unity. Taking our rewritten product from to , we see that both instances of cycle through each of the 13th roots. Then, our answer is:
~Mqnic_
Solution 2
To find , where and , rewrite this is as
where and are the roots of the quadratic .
Grouping the 's and 's results in
the denomiator by vietas.
the numerator by newtons sums
so the answer is
-resources
Solution 3
Denote for .
Thus, for , is a permutation of .
We have
Note that are all zeros of the polynomial . Thus,
Plugging this into Equation (1), we get
Therefore, the answer is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.