Median of a triangle
Revision as of 19:24, 6 March 2024 by Clever14710owl (talk | contribs)
A median of a triangle is a cevian of the triangle that joins one vertex to the midpoint of the opposite side.
In the following figure, is a median of triangle .
Each triangle has medians. The medians are concurrent at the centroid. The centroid divides the medians (segments) in a ratio.
Stewart's Theorem applied to the case , gives the length of the median to side equal to
This formula is particularly useful when is right, as by the Pythagorean Theorem we find that . This occurs when is the circumcenter of
See Also
This article is a stub. Help us out by expanding it.