1997 IMO Problems

Revision as of 20:47, 4 July 2024 by Eevee9406 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problems of the 1997 IMO.

Day I

Problem 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are colored alternatively black and white (as on a chessboard).

For any pair of positive integers $m$ and $n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $m$ and $n$, lie along edges of the squares.

Let $S_{1}$ be the total area of the black part of the triangle and $S_{2}$ be the total area of the white part.

Let $f(m,n)=|S_{1}-S_{2}|$

(a) Calculate $f(m,n)$ for all positive integers $m$ and $n$ which are either both even or both odd.

(b) Prove that $f(m,n) \le \frac{1}{2} max\left\{ m,n \right\}$ for all $m$ and $n$.

(c) Show that there is no constant $C$ such that $f(m,n)<C$ for all $m$ and $n$.

Solution

Problem 2

The angle at $A$ is the smallest angle of triangle $ABC$. The points $B$ and $C$ divide the circumcircle of the triangle into two arcs. Let $U$ be an interior point of the arc between $B$ and $C$ which does not contain $A$. The perpendicular bisectors of $AB$ and $AC$ meet the line $AU$ and $V$ and $W$, respectively. The lines $BV$ and $CW$ meet at $T$. Show that.

Solution

Problem 3

Let $x_{1}$, $x_{2}$,...,$x_{n}$ be real numbers satisfying the conditions

$|x_{1}+x_{2}+...+x_{n}|=1$

and

$|x_{i}| \le \frac{n+1}{2}$, for $i=1,2,...,n$

Show that there exists a permutation $y_{1}$, $y_{2}$,...,$y_{n}$ of $x_{1}$, $x_{2}$,...,$x_{n}$ such that

$|y_{1}+2y_{2}+...+ny_{n}|\le \frac{n+1}{2}$

Solution

Day II

Problem 4

An $n \times n$ matrix whose entries come from the set $S={1,2,...,2n-1}$ is called a $\textit{silver}$ matrix if, for each $i=1,2,...,n$, the $i$th row and the $i$th column together contain all elements of $S$. Show that

(a) there is no $\textit{silver}$ matrix for $n=1997$;

(b) $\textit{silver}$ matrices exist for infinitely many values of $n$.

Solution

Problem 5

Find all pairs $(a,b)$ of integers $a,b \ge 1$ that satisfy the equation

$a^{b^{2}}=b^{a}$

Solution

Problem 6

For each positive integer $n$, let $f(n)$ denote the number of ways of representing $n$ as a sum of powers of $2$ with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways:

$4;2+2;2+1+1;1+1+1+1$

Prove that, for any integer $n \ge 3$,

$2^{n^{2}/4}<f(2^{n})<2^{n^{2}/2}$.

Solution

See Also

1997 IMO (Problems) • Resources
Preceded by
1996 IMO
1 2 3 4 5 6 Followed by
1998 IMO
All IMO Problems and Solutions