Mock AIME 1 2010 Problems/Problem 6

Revision as of 10:41, 2 August 2024 by Thepowerful456 (talk | contribs) (created solution page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Find the number of Gaussian integers $z$ with magnitude less than 10000 such that there exists a different Gaussian integer $w$ such that $z = w^4$. (The magnitude of a complex $a+bi$, where $a$ and $b$ are reals, is defined to be $\sqrt{a^2+b^2}$. A Gaussian integer is defined to be a complex number whose real and imaginary parts are both integers.)

Solution

$\boxed{076}$.

See Also

Mock AIME 1 2010 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15