2024 AMC 12B Problems/Problem 8
Contents
Problem
What value of satisfies
Solution 1
We have \begin{align*} \log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\ 1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\ 1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\ 1&=2(\log_x3+\log_x2) \\ \log_x6&=\frac{1}{2} \\ x^{\frac{1}{2}}&=6 \\ x&=36 \end{align*} so
~kafuu_chino
Solution 2 (Change of Base)
\begin{align*} \frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x} &= 2 \\[6pt] \log_2x \cdot \log_3x &= 2(\log_2x+\log_3x) \\[6pt] \log_2x \cdot \log_3x &= 2\log_2x + 2\log_3x \\[6pt] \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} &= 2\frac{\log x}{\log 2} + 2\frac{\log x}{\log 3} \\[6pt] \frac{(\log x)^2}{\log 2 \cdot \log 3} &= \frac{2\log x \cdot \log 3 + 2\log x \cdot \log 2}{\log 2 \cdot \log 3} \\[6pt] (\log x)^2 &= 2\log x \cdot \log 3 + 2\log x \cdot \log 2 \\[6pt] (\log x)^2 &= 2\log x(\log 2 + \log 3) \\[6pt] \log x &= 2(\log 2 + \log 3) \\[6pt] x &= 10^{2(\log 2 + \log 3)} \\[6pt] x &= (10^{\log 2} \cdot 10^{\log 3})^2 \\[6pt] x &= (2 \cdot 3)^2 = 6^2 = \boxed{\textbf{(C) }36} \end{align*}
~sourodeepdeb
Solution 3 (Using Variables)
Let and . This gives us the equation
Then, from our definitions of and , and , so Taking the logarithm base of both sides of this equation gives us , hence Now, we substitute for in the equation, which gives Notice that we can factor out an in the numerator and denominator, if and doing so yields We know that so putting that in gives us So, , which, using the change of base formula, is equivalent to thus, Finally, using our original definition of we have so
~hdanger
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.