2025 USAMO Problems/Problem 2
Contents
[hide]Problem
Let and
be positive integers with
. Let
be a polynomial of degree
with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers
such that the polynomial
divides
, the product
is zero. Prove that
has a nonreal root.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2025 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.