2025 USAMO Problems/Problem 2

Revision as of 01:35, 22 March 2025 by Eevee9406 (talk | contribs) (Created page with "__TOC__ == Problem == Let <math>n</math> and <math>k</math> be positive integers with <math>k<n</math>. Let <math>P(x)</math> be a polynomial of degree <math>n</math> with re...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $n$ and $k$ be positive integers with $k<n$. Let $P(x)$ be a polynomial of degree $n$ with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers $a_0,\,a_1,\,\ldots,\,a_k$ such that the polynomial $a_kx^k+\cdots+a_1x+a_0$ divides $P(x)$, the product $a_0a_1\cdots a_k$ is zero. Prove that $P(x)$ has a nonreal root.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2025 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png