Liouville's Theorem (complex analysis)
In complex analysis, Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must be constant. It is named after Joseph Liouville. Picard's Little Theorem is a stronger result.
Statement
Let be a holomorphic function. Suppose there exists some real number such that for all . Then is a constant function.
Proof
We use Cauchy's Integral Formula.
Pick some ; let denote the simple counterclockwise circle of radius centered at . Then Since is holomorphic on the entire complex plane, can be arbitrarily large. It follows that , for every point . Now for any two complex numbers and , so is constant, as desired.