1985 AHSME Problems/Problem 24

Revision as of 22:45, 28 October 2011 by Admin25 (talk | contribs) (Created page with "==Problem== A non-zero digit is chosen in such a way that the probability of choosing digit <math> d </math> is <math> \log_{10}{(d+1)}-\log_{10}{d} </math>. The probability ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A non-zero digit is chosen in such a way that the probability of choosing digit $d$ is $\log_{10}{(d+1)}-\log_{10}{d}$. The probability that the digit $2$ is chosen is exactly $\frac{1}{2}$ the probability that the digit is chosen in the set

$\mathrm{(A)\ } \{2, 3\} \qquad \mathrm{(B) \ }\{3, 4\} \qquad \mathrm{(C) \  } \{4, 5, 6, 7, 8\} \qquad \mathrm{(D) \  } \{5, 6, 7, 8, 9\} \qquad \mathrm{(E) \  }\{4, 5, 6, 7, 8, 9\}$

Solution

Notice that $\log_{10}{(d+1)}-\log_{10}{d}=\log_{10}{\frac{d+1}{d}}$. Therefore, the probability of choosing $2$ is $\log_{10}{\frac{3}{2}}$. The probability that the digit is chosen out of the set is twice that, $2\log_{10}{\frac{3}{2}}=\log_{10}{\left(\frac{3}{2}\right)^2}=\log_{10}{\frac{9}{4}}$.


$\log_{10}{\frac{9}{4}}=\log_{10}{9}-\log_{10}{4}$


$=(\log_{10}{9}-\log_{10}{8})+(\log_{10}{8}-\log_{10}{7})+(\log_{10}{7}-\log_{10}{6})+(\log_{10}{6}-\log_{10}{5})+(\log_{10}{5}-\log_{10}{4})$

which is the probability that the digit is from the set $\{4, 5, 6, 7, 8\}, \boxed{\text{C}}$.

See Also

1985 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions