2012 USAJMO Problems/Problem 5
Problem
For distinct positive integers , , define to be the number of integers with such that the remainder when divided by 2012 is greater than that of divided by 2012. Let be the minimum value of , where and range over all pairs of distinct positive integers less than 2012. Determine .
Solution
The key insight in this problemo is noticing that when ak is higher then bk, a(2012-k) is lower than b(2012-k), except at 2(mod 4) residues. Also, they must be equal quite a lot. 2012=2^2*503. We should have multiples of 503. After trying all three pairs and getting 503 as our answer, we win. --Va2010 11:12, 28 April 2012 (EDT)va2010
See also
2012 USAJMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |