1974 USAMO Problems/Problem 1
Problem
Let , , and denote three distinct integers, and let denote a polynomial having all integral coefficients. Show that it is impossible that , , and .
Solution
It suffices to show that if are integers such that , , and , then .
We note that so the quanitities must be equal in absolute value. In fact, two of them, say and , must be equal. Then so , and , so , , and are equal, as desired.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1974 USAMO (Problems • Resources) | ||
First Problem | Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |