User talk:Bobthesmartypants/Sandbox

Bobthesmartypants's Sandbox

Solution 1

[asy] path Q; Q=(0,0)--(1,2)--(5,2)--(4,0)--cycle; draw(Q); draw((0,0)--(1.5,1)); label("D",(0,0),S); draw((1,2)--(1.5,1)); label("A",(1,2),N); draw((5,2)--(1.5,1)); label("B",(5,2),N); draw((4,0)--(1.5,1)); label("C",(4,0),S); draw((2,0)--(1.5,1),linetype("8 8")); label("E",(2,0),S); draw((2/3,4/3)--(1.5,1),linetype("8 8")); label("F",(2/3,4/3),W); label("P",(1.5,1),NNE); [/asy]

First, continue $\overline{AP}$ to hit $\overline{CD}$ at $E$. Also continue $\overline{CP}$ to hit $\overline{AD}$ at $F$.

We have that $\angle PAB=\angle PCB$. Because $\overline{AB}\parallel\overline{CD}$, we have $\angle PAB=\angle PED$.

Similarly, because $\overline{AD}\parallel\overline{BC}$, we have $\angle PCB=\angle PFD$.

Therefore, $\angle PAB=\angle PED=\angle PCB=\angle PFD$.

We also have that $\angle ADC=\angle ABC$ because $ABCD$ is a parallelogram, and $\angle APC=\angle FPE$.

Therefore, $ABCP\sim FDEP$. This means that $\dfrac{FD}{AB}=\dfrac{FP}{AP}=\dfrac{DP}{BP}$, so $\Delta ABP\sim\Delta FDP$.

Therefore, $\angle PBA=\angle PDA$. $\Box$


Solution 2

Note that $\dfrac{1}{n}$ is rational and $n$ is not divisible by $2$ nor $5$ because $n>11$.

This means the decimal representation of $\dfrac{1}{n}$ is a repeating decimal.

Let us set $a_1a_2\cdots a_x$ as the block that repeats in the repeating decimal: $\dfrac{1}{n}=0.\overline{a_1a_2\cdots a_x}$.

($a_1a_2\cdots a_x$ written without the overline used to signify one number so won't confuse with notation for repeating decimal)

The fractional representation of this repeating decimal would be $\dfrac{1}{n}=\dfrac{a_1a_2\cdots a_x}{10^x-1}$.

Taking the reciprocal of both sides you get $n=\dfrac{10^x-1}{a_1a_2\cdots a_x}$.

Multiplying both sides by $a_1a_2\cdots a_n$ gives $n(a_1a_2\cdots a_x)=10^x-1$.

Since $10^x-1=9\times \underbrace{111\cdots 111}_{x\text{ times}}$ we divide $9$ on both sides of the equation to get $\dfrac{n(a_1a_2\cdots a_x)}{9}=\underbrace{111\cdots 111}_{x\text{ times}}$.

Because $n$ is not divisible by $3$ (therefore $9$) since $n>11$ and $n$ is prime, it follows that $n|\underbrace{111\cdots 111}_{x\text{ times}}$. $\Box$

Picture 1

[asy]draw(Circle((1,1),2)); draw(Circle((sqrt(2),sqrt(3)/2),1)); dot((8/5,2/5)); dot((1,1)); draw((1,1)--(8/5,2/5),linetype("8 8")); label("a",(6/5,7/10),SSW); draw((8/5,2/5)--(12/5,-2/5),linetype("8 8")); label("b",(2,0),SSW); [/asy] \[\text{Find the probability that }b>a \text{.}\]

Picture 2

[asy] for (int i=0;i<6;i=i+1){ draw(dir(60*i)--dir(60*i+60)); } draw(dir(120)--(dir(0)+dir(-60))/2); draw(dir(180)--(dir(60)+dir(0))/2); fill(dir(120)--dir(180)--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); fill((dir(0)+dir(-60))/2--dir(0)--(dir(60)+dir(0))/2--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); [/asy] \[\text{Prove the shaded areas are equal.}\]

sandbox

[asy] unitsize(0.2mm); pair H,S,X,A,B; H = (25,0); S = (0,115); X = (122,26); A = ((H+X)/2); B = ((S+X)/2); draw(Circle((25,0),100)); draw(Circle((0,115),150)); draw(H--S--X--cycle); label("100",A,dir(-90)); label("150",B,dir(-120)); label("H",H,dir(180)); label("S",S,dir(90)); label("X",X,dir(0)); [/asy]