1979 USAMO Problems/Problem 4

Revision as of 14:11, 19 April 2014 by Suli (talk | contribs) (Solution (trig bash))

Problem

$P$ lies between the rays $OA$ and $OB$. Find $Q$ on $OA$ and $R$ on $OB$ collinear with $P$ so that $\frac{1}{PQ}\plus{} \frac{1}{PR}$ (Error compiling LaTeX. Unknown error_msg) is as large as possible.

Solution (inversions)

Perform the inversion with center $P$ and radius $\overline{PO}.$ Lines $OA,OB$ go to the circles $(O_1),(O_2)$ passing through $P,O$ and the line $QR$ cuts $(O_1),(O_2)$ again at the inverses $Q',R'$ of $Q,R.$ Hence

$\frac{1}{PQ}+\frac{1}{PR}=\frac{PQ'+PR'}{PO^2}=\frac{Q'R'}{PO^2}$

Thus, it suffices to find the line through $P$ that maximizes the length of the segment $\overline{Q'R'}.$ If $M,N$ are the midpoints of $PQ',PR',$ i.e. the projections of $O_1,O_2$ onto $QR,$ then from the right trapezoid $O_1O_2NM,$ we deduce that $O_1O_2 \ge MN = \frac{_1}{^2}Q'R'.$ Consequently, $2 \cdot O_1O_2$ is the greatest possible length of $Q'R',$ which obviously occurs when $O_1O_2NM$ is a rectangle. Hence, $Q,R$ are the intersections of $OA,OB$ with the perpendicular to $PO$ at $P.$

Solution (trig bash)

PLEASE PROVIDE A FIGURE.

Let $r = OP, x = <OPR, a = <POR,$ and $b = <POQ.$ Then $<ORP = \pi - x - a$ and $<OQP = x - b.$ Using the Law of Sines on triangle OPR gives \[PR = \sin a * \frac{r}{\sin(\pi - x - a)} = \sin a * \frac{r}{\sin(x + a)},\] and using the Law of Sines on triangle OPQ gives \[PQ = \sin b * \frac{r}{\sin(x - b)}.\] Note that $r, a,$ and $b$ are given constants. Hence, \[\frac{1}{PR} + \frac{1}{PQ} = \frac{1}{r} (\frac{\sin(x + a)}{\sin a} + \frac{\sin(x - b)}{\sin b}) = \frac{\sin(x+a)\sin b + \sin(x-b)\sin a}{r \sin a \sin b} = \frac{\sin x\cos a\sin b + \sin a\cos x\sin b + \sin x\cos b\sin a - \cos x\sin b\sin a}{r \sin a \sin b} = \frac{\sin x(\sin b \cos a + \sin a \cos b)}{r \sin a \sin b}\]

Clearly, this quantity is maximized when $\sin x = 1.$ Because $x$ must be less than $\pi$, $\frac{1}{PQ} + \frac{1}{PR}$ is as large as possible when $x = \frac{\pi}{2},$ or when line $QR$ is perpendicular to line $PO$.

See Also

1979 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png