1997 PMWC Problems/Problem I11

Revision as of 13:33, 20 April 2014 by TheMaskedMagician (talk | contribs) (Problem)

Problem

A rectangle $ABCD$ is made up of five small congruent rectangles as shown in the given figure. Find the perimeter, in cm, of $ABCD$ if its area is $6750\text{cm}^2$.

[asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(3.45cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -19.75, xmax = 39.09, ymin = -10.43, ymax = 20.84; /* image dimensions */ /* draw figures */ draw((0,3.45)--(0,0));  draw((0,0)--(4.29,0));  draw((0,3.45)--(4.29,3.45));  draw((4.29,3.45)--(4.29,0));  draw((0,1.32)--(4.29,1.32));  draw((2.14,0)--(2.14,1.32));  draw((1.43,1.32)--(1.43,3.45));  draw((2.86,1.32)--(2.86,3.45));  /* dots and labels */ label("$B$", (-0.2,0), SW * labelscalefactor);  label("$A$", (-0.2,3.45), NW * labelscalefactor);  label("$C$", (4.29,0), SE * labelscalefactor);  label("$D$", (4.29,3.45), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  /* end of picture */ //Credit to dasobson for the diagram[/asy]

Solution

Let $l$ and $w$ be the length, and width, respectively, of one of the small rectangles.

$3w=2l$

$l=\dfrac{3}{2}w$

$6750= 5lw = \dfrac{15}{2}w^2$

$w=30$

$l=45$

The perimeter of the big rectangle is

$2(w+l)+6w=330$

See Also

1997 PMWC (Problems)
Preceded by
Problem I10
Followed by
Problem I12
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10