1967 AHSME Problems/Problem 20
Problem
A circle is inscribed in a square of side , then a square is inscribed in that circle, then a circle is inscribed in the latter square, and so on. If is the sum of the areas of the first circles so inscribed, then, as grows beyond all bounds, approaches:
Solution
See also
1967 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.