2015 AIME II Problems/Problem 14

Revision as of 20:52, 26 March 2015 by Swe1 (talk | contribs) (Solution)

Problem

Let $x$ and $y$ be real numbers satisfying $x^4y^5+y^4x^5=810$ and $x^3y^6+y^3x^6=945$. Evaluate $2x^3+(xy)^3+2y^3$.

Solution

The expression we want to find is $2(x^3+y^3) + x^3y^3$.

Factor the given equations as $x^4y^4(x+y) = 810$ and $x^3y^3(x^3+y^3)=945$, respectively. Dividing the latter by the former equation yields $\frac{x^2-xy+y^2}{xy} = \frac{945}{810}$. Adding 3 to both sides and simplifying yields $\frac{(x+y)^2}{xy} = \frac{25}{6}$. Solving for $x+y$ and substituting this expression into the first equation yields $\frac{5\sqrt{6}}{6}(xy)^{\frac{9}{2}} = 810$. Solving for $xy$, we find that $xy = 3\sqrt[3]{2}$, so $x^3y^3 = 54$. Substituting this into the second equation and solving for $x^3+y^3$ yields $x^3+y^3=\frac{35}{2}$. So, the expression to evaluate is equal to $2 \times \frac{35}{2} + 54 = \boxed{89}$.