2016 AIME I Problems/Problem 4
Problem
A right prism with height has bases that are regular hexagons with sides of length 12. A vertex of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain measures degrees. Find .
Solution
[asy] import three; size(7cm); currentprojection = orthographic(5,-1,1.5);
triple T(int i){ return 12*dir(90,60*i) + (0,0,6*sqrt(3)); } triple B(int i){ return 12*dir(90,60*i); }
for(int i = 0; i < 6; ++i){ draw(B(i)--B(i + 1),0 < i && i < 6 ? i == 4 || i == 5 ? rgb(0,0.6,1) : linetype("4 4") : black); draw(T(i)--T(i + 1)); draw(T(i)--B(i),1 < i && i < 4 ? linetype("4 4") : i == 5 ? rgb(0,0.6,1) : black); }
triple A = B(5), U = T(5), B = B(4), F = B(6);
draw(B--U--F--cycle,rgb(0,0.6,1)); draw(arc(A/2,2,30,300,90,300),rgb(1,0.4,0.1)); draw(U--A/2--A,rgb(1,0.4,0.1));
dot(A); label(scale(0.8)*"",A,dir(200)); label(scale(0.8)*"",A/2,dir(50),rgb(1,0.4,0.1)); label(scale(0.8)*"",A--U,dir(0),rgb(0,0.6,1)); [/asy]
Let and be the vertices adjacent to on the same base as , and let be the other vertex of the triangular pyramid. Then . Let be the foot of the altitude from to . Then since is a triangle, . Since the dihedral angle between and is , is a triangle and . Thus .
Diagram Credits: chezbgone2
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.