1994 USAMO Problems/Problem 2
Problem
The sides of a -gon are initially colored so that consecutive sides are red, blue, red, blue,..., red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue,..., red, yellow, blue?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
1994 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.