2014 AMC 12B Problems/Problem 21
Problem 21
In the figure, is a square of side length . The rectangles and are congruent. What is ?
Solution 1
Draw the altitude from to and call the foot . Then . Consider . It is the hypotenuse of both right triangles and , and we know , so we must have by Hypotenuse-Leg congruence. From this congruence we have .
Notice that all four triangles in this picture are similar. Also, we have . So set and . Now . This means , so is the midpoint of . So , along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have and subsequently . This means , which gives , so the answer is .
Solution 2
Let . Let . Because and , are all similar. Using proportions and the pythagorean theorem, we find Because we know that , we can set up a systems of equations Solving for in the second equation, we get Plugging this into the first equation, we get Plugging into the previous equation with , we get
Solution 3
Let , , and . Then and because and , . Furthermore, the area of the four triangles and the two rectangles sums to 1:
By the Pythagorean theorem:
Then by the rational root theorem, this has roots , , and . The first and last roots are extraneous because they imply and , respectively, thus .
Solution 4
Let = and = . It is shown that all four triangles in the picture are similar. From the square side lengths:
Solving for we get:
Solution 5
Note that is a diagonal of , so it must be equal in length to . Therefore, quadrilateral has , and , so it must be either an isosceles trapezoid or a parallelogram. But due to the slope of and , we see that it must be a parallelogram. Therefore, . But by the symmetry in rectangle , we see that . Therefore, . We also know that , hence .
As and , and as is right, we know that must be a 30-60-90 triangle. Therefore, and . But by similarity, is also a 30-60-90 triangle, hence . But , hence . As , this implies that . Thus the answer is .
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.