1983 AIME Problems/Problem 10

Revision as of 23:13, 23 July 2006 by Joml88 (talk | contribs)

Problem

The numbers $1447$, $1005$, and $1231$ have something in common. Each is a four-digit number beginning with $1$ that has exactly two identical digits. How many such numbers are there?

Solution

Suppose the two identical digits are both one. Since the thousands digits must be one, the other one can be in only one of three digits,

$11xy,\qquad 1x1y,\qquad1xy1.$

Because the number must have exactly two identical digits, $x\neq y$, $x\neq1$, and $y\neq1$. Hence, there are $3\cdot9\cdot8=216$ numbers of this form.

Suppose the two identical digits are not one. Therefore, consider the following possibilities,

$1xxy,\qquad1xyx,\qquad1yxx.$

Again, $x\neq y$, $x\neq 1$, and $y\neq 1$. There are $3\cdot9\cdot8=216$ numbers of this form too.

Thus, the desired answer is $216+216=432$.


See also