1960 AHSME Problems/Problem 13

Revision as of 19:06, 8 May 2018 by Rockmanex3 (talk | contribs) (Better graphing for Problem 13)

Problem

The polygon(s) formed by $y=3x+2, y=-3x+2$, and $y=-2$, is (are):

$\textbf{(A) }\text{An equilateral triangle}\qquad\textbf{(B) }\text{an isosceles triangle} \qquad\textbf{(C) }\text{a right triangle} \qquad \\ \textbf{(D) }\text{a triangle and a trapezoid}\qquad\textbf{(E) }\text{a quadrilateral}$

Solution

[asy]import graph; size(10.22 cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.2,xmax=4.2,ymin=-4.2,ymax=4.2;  pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0);   /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs);  Label laxis; laxis.p=fontsize(10);  xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  dot((0,2),ds); dot((1.333,-2),ds); dot((-1.333,-2),ds); draw((0,2)--(1.333,-2)--(-1.333,-2)--(0,2));  [/asy]

The points of intersection of two of the lines are $(0,2)$ and $(\pm \frac{4}{3} , -2)$, so use the Distance Formula to find the sidelengths.

Two of the side lengths are $\sqrt{(\frac{4}{3})^2+4^2} = \frac{4 \sqrt{10}}{3}$ while one of the side lengths is $4$. That makes the triangle isosceles, so the answer is $\boxed{\textbf{(B)}}$.

See Also

1960 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions