2000 AMC 10 Problems/Problem 20

Revision as of 09:08, 25 June 2018 by Medhasrisairavi (talk | contribs) (Solution 3 - Experimentation)

Problem

Let $A$, $M$, and $C$ be nonnegative integers such that $A+M+C=10$. What is the maximum value of $A\cdot M\cdot C+A\cdot M+M\cdot C+C\cdot A$?

$\mathrm{(A)}\ 49 \qquad\mathrm{(B)}\ 59 \qquad\mathrm{(C)}\ 69 \qquad\mathrm{(D)}\ 79 \qquad\mathrm{(E)}\ 89$

Solution 1

The trick is to realize that the sum $AMC+AM+MC+CA$ is similar to the product $(A+1)(M+1)(C+1)$. If we multiply $(A+1)(M+1)(C+1)$, we get \[(A+1)(M+1)(C+1) = AMC + AM + AC + MC + A + M + C + 1.\] We know that $A+M+C=10$, therefore $(A+1)(M+1)(C+1) = (AMC + AM + MC + CA) + 11$ and \[AMC + AM + MC + CA = (A+1)(M+1)(C+1) - 11.\] Now consider the maximal value of this expression. Suppose that some two of $A$, $M$, and $C$ differ by at least $2$. Then this triple $(A,M,C)$ is not optimal. (To see this, WLOG let $A\geq C+2.$ We can then increase the value of $(A+1)(M+1)(C+1)$ by changing $A \to A-1$ and $C \to C+1$.)

Therefore the maximum is achieved when $(A,M,C)$ is a rotation of $(3,3,4)$. The value of $(A+1)(M+1)(C+1)$ in this case is $4\cdot 4\cdot 5=80,$ and thus the maximum of $AMC + AM + MC + CA$ is $80-11 = \boxed{\textbf{(C)}\ 69}.$

Solution 2

We could also do it the more rigorous way, and find out that $A = 3$, $M = 4$, and $C = 3$. This makes sense because to get the largest value of $A \cdot M \cdot C$, we need to have $A$, $M$, and $C$ be as close together as possible. $AMC + AM + MC + AC = 36 + 12 + 12 + 9 = 69$. So the answer is $\boxed{\textbf{(C)}\ 69}.$

Solution 3 - Experimentation

Notice that if we want to maximize $AMC + AM + MC + AC$, we want A, M, and C to be as close as possible. For example, if $A = 7, B = 2$, and $C = 1$, then the expression would have a much smaller value than if we were to substitute $A = 4, B = 5$, and $C = 1$. So to make A, B, and C as close together as possible, we divide $\frac{10}{3}$ to get $3$. Therefore, A must be 3, B must be 3, and C must be 6. $AMC + AM + MC + AC = 36 + 12 + 12 + 9 = 69$. So the answer is $\boxed{\textbf{(C)}\ 69}$

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png