Difference between revisions of "1955 AHSME Problems/Problem 39"

(Wrote a Solution for this problem, since it didn't have one.)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
==Problem==
 +
If <math>y=x^2+px+q</math>, then if the least possible value of <math>y</math> is zero <math>q</math> is equal to:
 +
 +
<math>\textbf{(A)}\ 0\qquad\textbf{(B)}\ \frac{p^2}{4}\qquad\textbf{(C)}\ \frac{p}{2}\qquad\textbf{(D)}\ -\frac{p}{2}\qquad\textbf{(E)}\ \frac{p^2}{4}-q</math>
 +
 
==Solution==
 
==Solution==
  
 
The least possible value of <math>y</math> is given at the <math>y</math> coordinate of the vertex. The <math>x</math>- coordinate is given by  
 
The least possible value of <math>y</math> is given at the <math>y</math> coordinate of the vertex. The <math>x</math>- coordinate is given by  
<cmath>\frac{-p}{2}</cmath>. Plugging this into the quadratic, we get
+
<cmath>\frac{-p}{(2)(1)} = \frac{-p}{2}</cmath> Plugging this into the quadratic, we get
 
<cmath>y = \frac{p^2}{4} - \frac{p^2}{2} + q</cmath>
 
<cmath>y = \frac{p^2}{4} - \frac{p^2}{2} + q</cmath>
 
<cmath>0 = \frac{p^2}{4} - \frac{2p^2}{4} + q</cmath>
 
<cmath>0 = \frac{p^2}{4} - \frac{2p^2}{4} + q</cmath>
<math></math>0 = \frac{-p^2}{4} + q$
+
<cmath>0 = \frac{-p^2}{4} + q</cmath>
 
<cmath>q = \frac{p^2}{4} = \boxed{B}</cmath>
 
<cmath>q = \frac{p^2}{4} = \boxed{B}</cmath>
  
 
~JustinLee2017
 
~JustinLee2017

Latest revision as of 13:26, 19 July 2021

Problem

If $y=x^2+px+q$, then if the least possible value of $y$ is zero $q$ is equal to:

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ \frac{p^2}{4}\qquad\textbf{(C)}\ \frac{p}{2}\qquad\textbf{(D)}\ -\frac{p}{2}\qquad\textbf{(E)}\ \frac{p^2}{4}-q$

Solution

The least possible value of $y$ is given at the $y$ coordinate of the vertex. The $x$- coordinate is given by \[\frac{-p}{(2)(1)} = \frac{-p}{2}\] Plugging this into the quadratic, we get \[y = \frac{p^2}{4} - \frac{p^2}{2} + q\] \[0 = \frac{p^2}{4} - \frac{2p^2}{4} + q\] \[0 = \frac{-p^2}{4} + q\] \[q = \frac{p^2}{4} = \boxed{B}\]

~JustinLee2017