# Difference between revisions of "1957 AHSME Problems/Problem 38"

## Problem

From a two-digit number $N$ we subtract the number with the digits reversed and find that the result is a positive perfect cube. Then: $\textbf{(A)}\ {N}\text{ cannot end in 5}\qquad\\ \textbf{(B)}\ {N}\text{ can end in any digit other than 5}\qquad \\ \textbf{(C)}\ {N}\text{ does not exist}\qquad\\ \textbf{(D)}\ \text{there are exactly 7 values for }{N}\qquad\\ \textbf{(E)}\ \text{there are exactly 10 values for }{N}$

## Solution

The number $N$ can be written as $10a+b$ with $a$ and $b$ representing the digits. The number $N$ with its digits reversed is $10b+a$. Since the problem asks for a positive number as the difference of these two numbers, than $a>b$. Writing this out, we get $10a+b-(10b+a)=9a-9b=9(a-b)$. Therefore, the difference must be a multiple of $9$, and the only perfect cube with less than $3$ digits and is multiple of $9$ is $3^3=27$. Also, that means $a-b=3$, and there are $7$ possibilities of that, so our answer is $\boxed{\textbf{(D)}}$ There are exactly $7$ values of $N$

## See Also

 1957 AHSME (Problems • Answer Key • Resources) Preceded byProblem 37 Followed byProblem 39 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS