Difference between revisions of "1961 IMO Problems/Problem 1"

 
(reverted to official wording (i.e., from <http://imo.math.ca/>); added solution; added formatting + category tag (although it's more like a long, hairy intermediate problem than an olympiad problem))
Line 1: Line 1:
Solve the following system of equations:
+
== Problem ==
  
<math>x + y + z = a</math>
+
(''Hungary'')
 +
Solve the system of equations:
  
<math>x^2</math><math>+y^2+z^2=b^2</math>
+
<center>
 +
<math>
 +
\begin{matrix}
 +
\quad x + y + z \!\!\! &= a \; \, \\
 +
x^2 +y^2+z^2 \!\!\! &=b^2 \\
 +
\qquad \qquad xy \!\!\!  &= z^2
 +
\end{matrix}
 +
</math>
 +
</center>
  
<math>xy = z^2</math>
+
where <math> \displaystyle a </math> and <math> \displaystyle b </math> are constants.  Give the conditions that <math> \displaystyle a </math> and <math> \displaystyle b </math> must satisfy so that <math> \displaystyle x, y, z </math> (the solutions of the system) are distinct positive numbers.
  
where ''a'' and ''b'' are given real numbersWhat conditions must hold on ''a'' and ''b'' for the solutions to be positive and distinct?
+
== Solution ==
 +
 
 +
Note that <math> \displaystyle x^2 + y^2 = (x+y)^2 - 2xy = (x+y)^2 - 2z^2 </math>, so the first two equations become
 +
<center>
 +
<math>
 +
\begin{matrix}
 +
\quad (x + y) + z \!\!\! &= a \; \; (*) \\
 +
(x+y)^2 - z^2 \!\!\! &=b^2 (**)
 +
\end{matrix}
 +
</math>.
 +
</center>
 +
 
 +
We note that <math> \displaystyle (x+y)^2 - z^2 = \Big[ (x+y)+z \Big]\Big[ (x+y)-z\Big] </math>, so if <math> \displaystyle a </math> equals 0, then <math> \displaystyle b </math> must also equal 0.  We then have <math> \displaystyle  x+y = -z </math>; <math> \displaystyle xy = (x+y)^2 </math>.  This gives us <math> \displaystyle x^2 + xy + y^2 = 0 </math>.  Mutiplying both sides by <math> \displaystyle (x-y) </math>, we have <math> \displaystyle x^3 - y^3 = 0 </math>.  Since we want <math> \displaystyle x,y </math> to be real, this implies <math> \displaystyle x = y </math>.  But <math> \displaystyle x^2 + x^2 + x^2 </math> can only equal 0 when <math> \displaystyle x=0 </math> (which, in this case, implies <math> \displaystyle y,z = 0 </math>).  Hence there are no positive solutions when <math> \displaystyle a = 0 </math>.
 +
 
 +
When <math> \displaystyle a \neq 0 </math>, we divide <math> \displaystyle (**) </math> by <math> \displaystyle (*) </math> to obtain the system of equations
 +
<center>
 +
<math>
 +
\begin{matrix}
 +
(x+y)+z &= a \; \quad \\
 +
(x+y)-z &= b^2/a
 +
\end{matrix}
 +
</math>,
 +
</center>
 +
which clearly has solution <math> x+y = \frac{a^2 + b^2}{2a} </math>, <math> z = \frac{a^2 - b^2}{2a} </math>.  In order for these both to be positive, we must have positive <math> \displaystyle a </math> and <math> \displaystyle a^2 > b^2 </math>.  Now, we have <math> x+y = \frac{a^2 + b^2}{2a} </math>; <math> xy = \left(\frac{a^2 - b^2}{2a}\right)^2 </math>, so <math> \displaystyle x,y </math> are the roots of the quadratic <math> m^2 - \frac{a^2 + b^2}{2a}m + \left(\frac{a^2 - b^2}{2a}\right)^2 </math>The [[discriminant]] for this equation is
 +
<center>
 +
<math>
 +
\left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 = \frac{ (3a^2 - b^2)(3b^2 - a^2) }{4a^2}
 +
</math>.
 +
</center>
 +
If the expressions <math> \displaystyle (3a^2 - b^2), (3b^2 - a^2) </math> were simultaneously negative, then their sum, <math> \displaystyle 2(a^2 + b^2) </math>, would also be negative, which cannot be.  Therefore our quadratic's discriminant is positive when <math> \displaystyle 3a^2 > b^2 </math> and <math> \displaystyle 3b^2 > a^2 </math>.  But we have already replaced the first inequality with the sharper bound <math> \displaystyle a^2 > b^2 </math>.  It is clear that both roots of the quadratic must be positive if the discriminant is positive (we can see this either from <math> \left(\frac{a^2 + b^2}{2a}\right)^2 > \left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 </math> or from [[Polynomial#Descartes.27_Law_of_Signs | Descartes' Rule of Signs]]).  We have now found the solutions to the system, and determined that it has positive solutions if and only if <math> \displaystyle a </math> is positive and <math> \displaystyle 3b^2 > a^2 > b^2 </math>.  Q.E.D.
 +
 
 +
 
 +
{{alternate solutions}}
 +
 
 +
== Resources ==
 +
 
 +
* [[1961 IMO Problems]]
 +
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=343297#p343297 Discussion on AoPS/MathLinks]
 +
 
 +
 
 +
[[Category:Olympiad Algebra Problems]]

Revision as of 18:44, 6 April 2007

Problem

(Hungary) Solve the system of equations:

$\begin{matrix} \quad x + y + z \!\!\! &= a \; \, \\ x^2 +y^2+z^2 \!\!\! &=b^2 \\ \qquad \qquad xy \!\!\!  &= z^2 \end{matrix}$

where $\displaystyle a$ and $\displaystyle b$ are constants. Give the conditions that $\displaystyle a$ and $\displaystyle b$ must satisfy so that $\displaystyle x, y, z$ (the solutions of the system) are distinct positive numbers.

Solution

Note that $\displaystyle x^2 + y^2 = (x+y)^2 - 2xy = (x+y)^2 - 2z^2$, so the first two equations become

$\begin{matrix} \quad (x + y) + z \!\!\! &= a \; \; (*) \\ (x+y)^2 - z^2 \!\!\! &=b^2 (**) \end{matrix}$.

We note that $\displaystyle (x+y)^2 - z^2 = \Big[ (x+y)+z \Big]\Big[ (x+y)-z\Big]$, so if $\displaystyle a$ equals 0, then $\displaystyle b$ must also equal 0. We then have $\displaystyle  x+y = -z$; $\displaystyle xy = (x+y)^2$. This gives us $\displaystyle x^2 + xy + y^2 = 0$. Mutiplying both sides by $\displaystyle (x-y)$, we have $\displaystyle x^3 - y^3 = 0$. Since we want $\displaystyle x,y$ to be real, this implies $\displaystyle x = y$. But $\displaystyle x^2 + x^2 + x^2$ can only equal 0 when $\displaystyle x=0$ (which, in this case, implies $\displaystyle y,z = 0$). Hence there are no positive solutions when $\displaystyle a = 0$.

When $\displaystyle a \neq 0$, we divide $\displaystyle (**)$ by $\displaystyle (*)$ to obtain the system of equations

$\begin{matrix} (x+y)+z &= a \; \quad \\ (x+y)-z &= b^2/a \end{matrix}$,

which clearly has solution $x+y = \frac{a^2 + b^2}{2a}$, $z = \frac{a^2 - b^2}{2a}$. In order for these both to be positive, we must have positive $\displaystyle a$ and $\displaystyle a^2 > b^2$. Now, we have $x+y = \frac{a^2 + b^2}{2a}$; $xy = \left(\frac{a^2 - b^2}{2a}\right)^2$, so $\displaystyle x,y$ are the roots of the quadratic $m^2 - \frac{a^2 + b^2}{2a}m + \left(\frac{a^2 - b^2}{2a}\right)^2$. The discriminant for this equation is

$\left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 = \frac{ (3a^2 - b^2)(3b^2 - a^2) }{4a^2}$.

If the expressions $\displaystyle (3a^2 - b^2), (3b^2 - a^2)$ were simultaneously negative, then their sum, $\displaystyle 2(a^2 + b^2)$, would also be negative, which cannot be. Therefore our quadratic's discriminant is positive when $\displaystyle 3a^2 > b^2$ and $\displaystyle 3b^2 > a^2$. But we have already replaced the first inequality with the sharper bound $\displaystyle a^2 > b^2$. It is clear that both roots of the quadratic must be positive if the discriminant is positive (we can see this either from $\left(\frac{a^2 + b^2}{2a}\right)^2 > \left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2$ or from Descartes' Rule of Signs). We have now found the solutions to the system, and determined that it has positive solutions if and only if $\displaystyle a$ is positive and $\displaystyle 3b^2 > a^2 > b^2$. Q.E.D.


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Resources