Difference between revisions of "1967 AHSME Problems/Problem 14"

m (Solution)
(Problem)
Line 1: Line 1:
== Problem ==
+
==Problem 14==
The number of distinct points common to the curves <math>x^2+4y^2=1</math> and <math>4x^2+y^2=4</math> is:
 
  
<math>\text{(A) } 0 \quad \text{(B) } 1 \quad \text{(C) } 2 \quad \text{(D) } 3 \quad \text{(E) } 4</math>
+
Let <math>f(t)=\frac{t}{1-t}</math>, <math>t \not= 1</math>.  If <math>y=f(x)</math>, then <math>x</math> can be expressed as
 +
 
 +
<math>\textbf{(A)}\ f\left(\frac{1}{y}\right)\qquad
 +
\textbf{(B)}\ -f(y)\qquad
 +
\textbf{(C)}\ -f(-y)\qquad
 +
\textbf{(D)}\ f(-y)\qquad
 +
\textbf{(E)}\ f(y)</math>
 +
 
 +
[[1967 AHSME Problems/Problem 14|Solution]]
  
 
== Solution ==
 
== Solution ==

Revision as of 14:07, 10 August 2020

Problem 14

Let $f(t)=\frac{t}{1-t}$, $t \not= 1$. If $y=f(x)$, then $x$ can be expressed as

$\textbf{(A)}\ f\left(\frac{1}{y}\right)\qquad \textbf{(B)}\ -f(y)\qquad \textbf{(C)}\ -f(-y)\qquad \textbf{(D)}\ f(-y)\qquad \textbf{(E)}\ f(y)$

Solution

Solution

Let $x^2 = a$ and $y^2 = b.$

then

        $a+4b=1$

and

        $4a+b=4$

By solving we find--

$a=1$

$b=0$

However \[a=x^2\] and \[b=y^2\]

Therefore $y=0$, and $x=1,-1$

Thus, the only solutions are $(0,1)$, and $(0,-1)$


So there are only 2 solutions


$\rightarrow$ $\fbox{C}$

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png