Difference between revisions of "1967 AHSME Problems/Problem 37"

(Solution)
m (See also)
 
Line 14: Line 14:
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1967|num-b=36|num-a=38}}   
+
{{AHSME 40p box|year=1967|num-b=36|num-a=38}}   
  
 
[[Category: Intermediate Geometry Problems]]
 
[[Category: Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 01:40, 16 August 2023

Problem

Segments $AD=10$, $BE=6$, $CF=24$ are drawn from the vertices of triangle $ABC$, each perpendicular to a straight line $RS$, not intersecting the triangle. Points $D$, $E$, $F$ are the intersection points of $RS$ with the perpendiculars. If $x$ is the length of the perpendicular segment $GH$ drawn to $RS$ from the intersection point $G$ of the medians of the triangle, then $x$ is:

$\textbf{(A)}\ \frac{40}{3}\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ \frac{56}{3}\qquad \textbf{(D)}\ \frac{80}{3}\qquad \textbf{(E)}\ \text{undetermined}$

Solution

$\fbox{A}$

WLOG let $RS$ be the x-axis, or at least horizontal. The three lengths represent the y-coordinates of points $A,B,C$. As $G$ is by definition the average of $A,B,C$, it's coordinates are the average of the coordinates of $A,B,$ and $C$. Hence, the y-coordinate of $G$, which is also the distance from $G$ to $RS$, is the average of the y-coordinates of $A,B,$ and $C$, or $\frac{10+6+24}{3}$, hence the result.

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png