# Difference between revisions of "1971 AHSME Problems/Problem 29"

(Created page with "== Problem 29 == Given the progression <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math>. The least posi...") |
(→Problem 29) |
||

Line 9: | Line 9: | ||

\textbf{(D) }10\qquad | \textbf{(D) }10\qquad | ||

\textbf{(E) }11 </math> | \textbf{(E) }11 </math> | ||

− | |||

− | |||

==Solution== | ==Solution== |

## Revision as of 18:02, 22 August 2019

## Problem 29

Given the progression . The least positive integer such that the product of the first terms of the progression exceeds is