Difference between revisions of "1971 AHSME Problems/Problem 29"

(Problem 29)
(Solution)
Line 11: Line 11:
  
 
==Solution==
 
==Solution==
 +
 +
The product of the sequence <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math> is equal to <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}</math> since we are looking for the smallest value <math>n</math> that will create <math>100,000</math>, or <math>10^5</math>, we set up the equation <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}=10^5</math>

Revision as of 18:12, 22 August 2019

Problem 29

Given the progression $10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}$. The least positive integer $n$ such that the product of the first $n$ terms of the progression exceeds $100,000$ is

$\textbf{(A) }7\qquad \textbf{(B) }8\qquad \textbf{(C) }9\qquad \textbf{(D) }10\qquad  \textbf{(E) }11$

Solution

The product of the sequence $10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}$ is equal to $10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}$ since we are looking for the smallest value $n$ that will create $100,000$, or $10^5$, we set up the equation $10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}=10^5$

Invalid username
Login to AoPS