Difference between revisions of "1971 AHSME Problems/Problem 7"

m
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
Let\ x\ equal\ 2^{-2k}
+
==Problem==
\
+
<math>2^{-(2k+1)}-2^{-(2k-1)}+2^{-2k}</math> is equal to
From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule\  
+
 
Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\
+
<math>\textbf{(A) }2^{-2k}\qquad \textbf{(B) }2^{-(2k-1)}\qquad \textbf{(C) }-2^{-(2k+1)}\qquad \textbf{(D) }0\qquad  \textbf{(E) }2</math>
Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ \frac{-x}{2} is\ equal\ to\ -2^{-(2k+1)}\
+
==Solution==
Thus\ our\ answer\ is\ c
+
<math>Let\ x\ equal\ 2^{-2k}\ \\*
 +
From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule.\  
 +
\\*Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\
 +
\\*Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ -(\frac{x}{2}) is\ equal\ to\ -2^{-(2k+1)}\
 +
\\*Thus\ our\ answer\ is\ c</math>

Latest revision as of 17:13, 23 June 2021

Problem

$2^{-(2k+1)}-2^{-(2k-1)}+2^{-2k}$ is equal to

$\textbf{(A) }2^{-2k}\qquad \textbf{(B) }2^{-(2k-1)}\qquad \textbf{(C) }-2^{-(2k+1)}\qquad \textbf{(D) }0\qquad  \textbf{(E) }2$

Solution

$Let\ x\ equal\ 2^{-2k}\ \\* From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule.\  \\*Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\ \\*Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ -(\frac{x}{2}) is\ equal\ to\ -2^{-(2k+1)}\ \\*Thus\ our\ answer\ is\ c$