Difference between revisions of "1973 AHSME Problems/Problem 18"

(See Also)
(Solution)
Line 13: Line 13:
 
Starting with some experimentation, substituting <math>p=5</math> results in <math>24</math>, substituting <math>p=7</math> results in <math>48</math>, and substituting <math>p=11</math> results in <math>120</math>.  For these primes, the resulting numbers are multiples of <math>24</math>.
 
Starting with some experimentation, substituting <math>p=5</math> results in <math>24</math>, substituting <math>p=7</math> results in <math>48</math>, and substituting <math>p=11</math> results in <math>120</math>.  For these primes, the resulting numbers are multiples of <math>24</math>.
  
To show that all primes <math>p \ge 5</math> result in <math>p^2 -1</math> being a multiple of <math>24</math>, we can use modular arithmetic.  Note that <math>p^2 - 1 = (p+1)(p-1)</math>.  Since <math>p \equiv 1,3 \mod 4</math>, <math>p^2 - 1</math> is a multiple of <math>8</math>.  Also, since <math>p \equiv 1,5 \mod 6</math>, <math>p^2 - 1</math> is a multiple of <math>3</math>.  Thus, <math>p^2 -1</math> is a multiple of <math>24</math>, so the answer is <math>\boxed{\textbf{(C)}}</math>.
+
To show that all primes we devise the following proof:
 +
<math>Proof:</math>
 +
<math>p \ge 5</math> result in <math>p^2 -1</math> being a multiple of <math>24</math>, we can use modular arithmetic.  Note that <math>p^2 - 1 = (p+1)(p-1)</math>.  Since <math>p \equiv 1,3 \mod 4</math>, <math>p^2 - 1</math> is a multiple of <math>8</math>.  Also, since <math>p \equiv 1,2 \mod 3</math>, <math>p^2 - 1</math> is a multiple of <math>3</math>.  Thus, <math>p^2 -1</math> is a multiple of <math>24</math>, so the answer is <math>\boxed{\textbf{(C)}}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 13:07, 1 January 2024

Problem

If $p \geq 5$ is a prime number, then $24$ divides $p^2 - 1$ without remainder

$\textbf{(A)}\ \text{never} \qquad \textbf{(B)}\ \text{sometimes only} \qquad \textbf{(C)}\ \text{always} \qquad$ $\textbf{(D)}\ \text{only if } p =5 \qquad \textbf{(E)}\ \text{none of these}$

Solution

Starting with some experimentation, substituting $p=5$ results in $24$, substituting $p=7$ results in $48$, and substituting $p=11$ results in $120$. For these primes, the resulting numbers are multiples of $24$.

To show that all primes we devise the following proof: $Proof:$ $p \ge 5$ result in $p^2 -1$ being a multiple of $24$, we can use modular arithmetic. Note that $p^2 - 1 = (p+1)(p-1)$. Since $p \equiv 1,3 \mod 4$, $p^2 - 1$ is a multiple of $8$. Also, since $p \equiv 1,2 \mod 3$, $p^2 - 1$ is a multiple of $3$. Thus, $p^2 -1$ is a multiple of $24$, so the answer is $\boxed{\textbf{(C)}}$.

See Also

1973 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions