1978 IMO Problems/Problem 2

Revision as of 18:09, 11 November 2023 by Tomasdiaz (talk | contribs) (Solution)

Problem

We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.

Solution

Let $R$ be the radius of the sphere.

Let point $O$ be the center of the sphere.

Let point $D$ be the 4th vertex of the face of the parallelepiped that contains points $P$, $A$, and $B$.

Let point $E$ be the point where the line that passes through $OP$ intersects the circle on the side nearest to point $A$

Let $\alpha=\measuredangle AOP$ ; $\beta=\measuredangle BPD$ ; $\theta=\measuredangle APE$

We start the calculations as follows:

$\left| AB \right|= \left| PD \right|$

$\left| PD \right|^{2}=\left| PA \right|^{2}+\left| PB \right|^{2}$ [Equation 1]

Using law of cosines:

$R^{2}=\left| OP \right|^{2} + \left| PB \right|^{2} - 2 \left| OP \right| \left| PB \right| cos (\measuredangle OPB)$

$R^{2}=\left| OP \right|^{2} + \left| PB \right|^{2} - 2 \left| OP \right| \left| PB \right| cos (\frac{\pi}{2}-\theta)$

$R^{2}=\left| OP \right|^{2} + \left| PB \right|^{2} - 2 \left| OP \right| \left| PB \right| sin (\theta)$

$\left| PB \right|^{2} =R^{2}-\left| OP \right|^{2} + 2 \left| OP \right| \left| PB \right| sin (\theta)$ [Equation 2]

Using law of cosines again we also get:

$\left| PA \right|^{2} =R^{2}+\left| OP \right|^{2} - 2 \left| OP \right| R cos(\alpha)$

$\left| PA \right|^{2} =R^{2}+\left| OP \right|^{2} - 2 \left| OP \right| \left[ \left| PA \right| cos(\theta) + \left| OP\right| \right]$

$\left| PA \right|^{2} =R^{2}-\left| OP \right|^{2} - 2 \left| OP \right| \left| PA \right| cos(\theta)$ [Equation 3]

Substituting [Equation 2] and [Equation 3] into [Equation 1] we get:

$\left| PD \right|^{2}=2R^{2}-2\left| OP \right|^{2}+2\left| OP \right| \left[ \left| PB \right| sin(\theta) - \left| PA \right| cos(\theta) \right]$ [Equation 4]

Now we apply the law of cosines again:

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right|cos(\measuredangle OPD)$

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| cos(\measuredangle OPB+\measuredangle BPD)$

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| cos(\frac{\pi}{2}-\theta+\beta)$

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| sin(\theta-\beta)$

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| \left[sin(\theta)cos(\beta)-sin(\beta)cos(\theta)  \right]$

Since, $sin(\beta)=\frac{\left| PA \right|}{\left| PD \right|}$ and $cos(\beta)=\frac{\left| PB \right|}{\left| PD \right|}$ then,

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| \left[\frac{\left| PB \right|}{\left| PD \right|}sin(\theta)-\frac{\left| PA \right|}{\left| PD \right|}cos(\theta)  \right]$

$\left| OD \right|^{2}=\left| OP \right|^{2}+\left| PD \right|^{2}-2\left| OP \right| \left| PD \right| \left\left| PB \right|sin(\theta)-\frac{\left| PA \right|}{\left| PD \right|}cos(\theta) \right]$ (Error compiling LaTeX. Unknown error_msg)




Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1978 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions