# 1983 AHSME Problems/Problem 18

Problem: Let be a polynomial function such that, for all real , For all real , is

(A) (B) (C) (D) (E) none of these

Solution:

Let . Then , so we can write the given equation as $\begin{align*} f(y) &= x^4 + 5x^2 + 3 \\ &= (x^2)^2 + 5x^2 + 3 \\ &= (y - 1)^2 + 5(y - 1) + 3 \\ &= y^2 - 2y + 1 + 5y - 5 + 3 \\ &= y^2 + 3y - 1. \end{align*}$ (Error compiling LaTeX. ! Package amsmath Error: \begin{align*} allowed only in paragraph mode.) Then substituting , we get $\begin{align*} f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \\ &= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \\ &= \boxed{x^4 + x^2 - 3}. \end{align*}$ (Error compiling LaTeX. ! Package amsmath Error: \begin{align*} allowed only in paragraph mode.) The answer is (B).