Difference between revisions of "1990 AJHSME Problems"

(New page: ==Problem 1== Solution == Problem 2 == Which digit of <math>.12345</math>, when changed to <math>9</math>, gives the largest number? <math>\text{(A)}...)
 
Line 16: Line 16:
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 +
Which of the following could '''not''' be the unit's digit [one's digit] of the square of a whole number?
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8</math>
  
 
[[1990 AJHSME Problems/Problem 4|Solution]]
 
[[1990 AJHSME Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
 +
Which of the following is closest to the product <math>(.48017)(.48017)(.48017)</math>?
 +
 +
<math>\text{(A)}\ 0.011 \qquad \text{(B)}\ 0.110 \qquad \text{(C)}\ 1.10 \qquad \text{(D)}\ 11.0 \qquad \text{(E)}\ 110</math>
  
 
[[1990 AJHSME Problems/Problem 5|Solution]]
 
[[1990 AJHSME Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
 +
Which of these five numbers is the largest?
 +
 +
<math>\text{(A)}\ 13579+\frac{1}{2468} \qquad \text{(B)}\ 13579-\frac{1}{2468} \qquad \text{(C)}\ 13579\times \frac{1}{2468}</math>
 +
 +
<math>\text{(D)}\ 13579\div \frac{1}{2468} \qquad \text{(E)}\ 13579.2468</math>
  
 
[[1990 AJHSME Problems/Problem 6|Solution]]
 
[[1990 AJHSME Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
 +
When three different numbers from the set <math>\{ -3, -2, -1, 4, 5 \} </math> are multiplied, the largest possible product is
 +
 +
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 60</math>
  
 
[[1990 AJHSME Problems/Problem 7|Solution]]
 
[[1990 AJHSME Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
 +
A dress originally priced at <math>80</math> dollars was put on sale for <math>25\% </math> off.  If <math>10\% </math> tax was added to the sale price, then the total selling price (in dollars) of the dress was
 +
 +
<math>\text{(A)}\ \text{45 dollars} \qquad \text{(B)}\ \text{52 dollars} \qquad \text{(C)}\ \text{54 dollars} \qquad \text{(D)}\ \text{66 dollars} \qquad \text{(E)}\ \text{68 dollars}</math>
  
 
[[1990 AJHSME Problems/Problem 8|Solution]]
 
[[1990 AJHSME Problems/Problem 8|Solution]]

Revision as of 20:37, 2 June 2009

Problem 1

Solution

Problem 2

Which digit of $.12345$, when changed to $9$, gives the largest number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Solution

Problem 3

Solution

Problem 4

Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8$

Solution

Problem 5

Which of the following is closest to the product $(.48017)(.48017)(.48017)$?

$\text{(A)}\ 0.011 \qquad \text{(B)}\ 0.110 \qquad \text{(C)}\ 1.10 \qquad \text{(D)}\ 11.0 \qquad \text{(E)}\ 110$

Solution

Problem 6

Which of these five numbers is the largest?

$\text{(A)}\ 13579+\frac{1}{2468} \qquad \text{(B)}\ 13579-\frac{1}{2468} \qquad \text{(C)}\ 13579\times \frac{1}{2468}$

$\text{(D)}\ 13579\div \frac{1}{2468} \qquad \text{(E)}\ 13579.2468$

Solution

Problem 7

When three different numbers from the set $\{ -3, -2, -1, 4, 5 \}$ are multiplied, the largest possible product is

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 60$

Solution

Problem 8

A dress originally priced at $80$ dollars was put on sale for $25\%$ off. If $10\%$ tax was added to the sale price, then the total selling price (in dollars) of the dress was

$\text{(A)}\ \text{45 dollars} \qquad \text{(B)}\ \text{52 dollars} \qquad \text{(C)}\ \text{54 dollars} \qquad \text{(D)}\ \text{66 dollars} \qquad \text{(E)}\ \text{68 dollars}$

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also

1990 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1989 AJHSME
Followed by
1991 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions
Invalid username
Login to AoPS