Difference between revisions of "1990 AJHSME Problems"

Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 +
 +
What is the smallest sum of two <math>3</math>-digit numbers that can be obtained by placing each of the six digits <math>4,5,6,7,8,9</math> in one of the six boxes in this addition problem?
 +
 +
<asy>
 +
unitsize(12);
 +
draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2));
 +
draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle);
 +
draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle);
 +
draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle);
 +
</asy>
 +
 +
<math>\text{(A)}\ 947 \qquad \text{(B)}\ 1037 \qquad \text{(C)}\ 1047 \qquad \text{(D)}\ 1056 \qquad \text{(E)}\ 1245</math>
  
 
[[1990 AJHSME Problems/Problem 1|Solution]]
 
[[1990 AJHSME Problems/Problem 1|Solution]]
Line 12: Line 24:
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 +
What fraction of the square is shaded?
 +
 +
<asy>
 +
draw((0,0)--(0,3)--(3,3)--(3,0)--cycle);
 +
draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3));
 +
fill((0,0)--(0,1)--(1,1)--cycle,grey);
 +
fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey);
 +
fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey);
 +
</asy>
 +
 +
<math>\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ \frac{5}{12} \qquad \text{(D)}\ \frac{3}{7} \qquad \text{(E)}\ \frac{1}{2}</math>
  
 
[[1990 AJHSME Problems/Problem 3|Solution]]
 
[[1990 AJHSME Problems/Problem 3|Solution]]
Line 58: Line 82:
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
The grading scale shown is used at Jones Junior High.  The fifteen scores in Mr. Freeman's class were: <cmath>\begin{tabular}[t]{lllllllll}
 +
89, & 72, & 54, & 97, & 77, & 92, & 85, & 74, & 75, \\
 +
63, & 84, & 78, & 71, & 80, & 90. & & & \\
 +
\end{tabular}</cmath>
 +
 +
In Mr. Freeman's class, what percent of the students received a grade of C?
 +
 +
<cmath>\boxed{\begin{tabular}[t]{cc}
 +
A: & 93 - 100 \\
 +
B: & 85 - 92 \\
 +
C: & 75 - 84 \\
 +
D: & 70 - 74 \\
 +
F: & 0 - 69
 +
\end{tabular}}</cmath>
 +
 +
<math>\text{(A)}\ 20\% \qquad \text{(B)}\ 25\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 33\frac{1}{3}\% \qquad \text{(E)}\ 40\% </math>
  
 
[[1990 AJHSME Problems/Problem 9|Solution]]
 
[[1990 AJHSME Problems/Problem 9|Solution]]

Revision as of 20:54, 20 June 2009

Problem 1

What is the smallest sum of two $3$-digit numbers that can be obtained by placing each of the six digits $4,5,6,7,8,9$ in one of the six boxes in this addition problem?

[asy] unitsize(12); draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2)); draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle); draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle); draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle); [/asy]

$\text{(A)}\ 947 \qquad \text{(B)}\ 1037 \qquad \text{(C)}\ 1047 \qquad \text{(D)}\ 1056 \qquad \text{(E)}\ 1245$

Solution

Problem 2

Which digit of $.12345$, when changed to $9$, gives the largest number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Solution

Problem 3

What fraction of the square is shaded?

[asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey); [/asy]

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ \frac{5}{12} \qquad \text{(D)}\ \frac{3}{7} \qquad \text{(E)}\ \frac{1}{2}$

Solution

Problem 4

Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8$

Solution

Problem 5

Which of the following is closest to the product $(.48017)(.48017)(.48017)$?

$\text{(A)}\ 0.011 \qquad \text{(B)}\ 0.110 \qquad \text{(C)}\ 1.10 \qquad \text{(D)}\ 11.0 \qquad \text{(E)}\ 110$

Solution

Problem 6

Which of these five numbers is the largest?

$\text{(A)}\ 13579+\frac{1}{2468} \qquad \text{(B)}\ 13579-\frac{1}{2468} \qquad \text{(C)}\ 13579\times \frac{1}{2468}$

$\text{(D)}\ 13579\div \frac{1}{2468} \qquad \text{(E)}\ 13579.2468$

Solution

Problem 7

When three different numbers from the set $\{ -3, -2, -1, 4, 5 \}$ are multiplied, the largest possible product is

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 60$

Solution

Problem 8

A dress originally priced at $80$ dollars was put on sale for $25\%$ off. If $10\%$ tax was added to the sale price, then the total selling price (in dollars) of the dress was

$\text{(A)}\ \text{45 dollars} \qquad \text{(B)}\ \text{52 dollars} \qquad \text{(C)}\ \text{54 dollars} \qquad \text{(D)}\ \text{66 dollars} \qquad \text{(E)}\ \text{68 dollars}$

Solution

Problem 9

The grading scale shown is used at Jones Junior High. The fifteen scores in Mr. Freeman's class were: \[\begin{tabular}[t]{lllllllll} 89, & 72, & 54, & 97, & 77, & 92, & 85, & 74, & 75, \\ 63, & 84, & 78, & 71, & 80, & 90. & & & \\ \end{tabular}\]

In Mr. Freeman's class, what percent of the students received a grade of C?

\[\boxed{\begin{tabular}[t]{cc} A: & 93 - 100 \\ B: & 85 - 92 \\ C: & 75 - 84 \\ D: & 70 - 74 \\ F: & 0 - 69  \end{tabular}}\]

$\text{(A)}\ 20\% \qquad \text{(B)}\ 25\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 33\frac{1}{3}\% \qquad \text{(E)}\ 40\%$

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

There are twenty-four $4$-digit numbers that use each of the four digits $2$, $4$, $5$, and $7$ exactly once. Listed in numerical order from smallest to largest, the number in the $17\text{th}$ position in the list is

$\text{(A)}\ 4527 \qquad \text{(B)}\ 5724 \qquad \text{(C)}\ 5742 \qquad \text{(D)}\ 7245 \qquad \text{(E)}\ 7524$

Solution

Problem 13

One proposal for new postage rates for a letter was $30$ cents for the first ounce and $22$ cents for each additional ounce (or fraction of an ounce). The postage for a letter weighing $4.5$ ounces was

$\text{(A)}\ \text{96 cents} \qquad \text{(B)}\ \text{1.07 dollars} \qquad \text{(C)}\ \text{1.18 dollars} \qquad \text{(D)}\ \text{1.20 dollars} \qquad \text{(E)}\ \text{1.40 dollars}$

Solution

Problem 14

A bag contains only blue balls and green balls. There are $6$ blue balls. If the probability of drawing a blue ball at random from this bag is $\frac{1}{4}$, then the number of green balls in the bag is

$\text{(A)}\ 12 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 30 \qquad \text{(E)}\ 36$

Solution

Problem 15

Solution

Problem 16

$1990-1980+1970-1960+\cdots -20+10 =$

$\text{(A)}\ -990 \qquad \text{(B)}\ -10 \qquad \text{(C)}\ 990 \qquad \text{(D)}\ 1000 \qquad \text{(E)}\ 1990$

Solution

Problem 17

A straight concrete sidewalk is to be $3$ feet wide, $60$ feet long, and $3$ inches thick. How many cubic yards of concrete must a contractor order for the sidewalk if concrete must be ordered in a whole number of cubic yards?

$\text{(A)}\ 2 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ \text{more than 20}$

Solution

Problem 18

Solution

Problem 19

There are $120$ seats in a row. What is the fewest number of seats that must be occupied so the next person to be seated must sit next to someone?

$\text{(A)}\ 30 \qquad \text{(B)}\ 40 \qquad \text{(C)}\ 41 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 119$

Solution

Problem 20

The annual incomes of $1,000$ families range from $8200$ dollars to $98,000$ dollars. In error, the largest income was entered on the computer as $980,000$ dollars. The difference between the mean of the incorrect data and the mean of the actual data is

$\text{(A)}\ \text{882 dollars} \qquad \text{(B)}\ \text{980 dollars} \qquad \text{(C)}\ \text{1078 dollars} \qquad \text{(D)}\ \text{482,000 dollars} \qquad \text{(E)}\ \text{882,000 dollars}$

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also

1990 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1989 AJHSME
Followed by
1991 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions
Invalid username
Login to AoPS