Difference between revisions of "1990 AJHSME Problems"

Line 103: Line 103:
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
On this monthly calendar, the date behind one of the letters is added to the date behind <math>\text{C}</math>.  If this sum equals the sum of the dates behind <math>\text{A}</math> and <math>\text{B}</math>, then the letter is
 +
 +
<asy>
 +
unitsize(12);
 +
draw((1,1)--(23,1));
 +
draw((0,5)--(23,5));
 +
draw((0,9)--(23,9));
 +
draw((0,13)--(23,13));
 +
for(int a=0; a<6; ++a)
 +
{
 +
  draw((4a+2,0)--(4a+2,14));
 +
}
 +
label("Tues.",(4,14),N); label("Wed.",(8,14),N); label("Thurs.",(12,14),N);
 +
label("Fri.",(16,14),N); label("Sat.",(20,14),N);
 +
label("C",(12,10.3),N); label("$\textbf{A}$",(16,10.3),N); label("Q",(12,6.3),N);
 +
label("S",(4,2.3),N); label("$\textbf{B}$",(8,2.3),N); label("P",(12,2.3),N);
 +
label("T",(16,2.3),N); label("R",(20,2.3),N);
 +
</asy>
 +
 +
<math>\text{(A)}\ \text{P} \qquad \text{(B)}\ \text{Q} \qquad \text{(C)}\ \text{R} \qquad \text{(D)}\ \text{S} \qquad \text{(E)}\ \text{T}</math>
  
 
[[1990 AJHSME Problems/Problem 10|Solution]]
 
[[1990 AJHSME Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
 +
The numbers on the faces of this cube are consecutive whole numbers.  The sums of the two numbers on each of the three pairs of opposite faces are equal.  The sum of the six numbers on this cube is
 +
 +
<asy>
 +
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
 +
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
 +
draw((3,3)--(5,5));
 +
label("$15$",(1.5,1.2),N); label("$11$",(4,2.3),N); label("$14$",(2.5,3.7),N);
 +
</asy>
 +
 +
<math>\text{(A)}\ 75 \qquad \text{(B)}\ 76 \qquad \text{(C)}\ 78 \qquad \text{(D)}\ 80 \qquad \text{(E)}\ 81</math>
  
 
[[1990 AJHSME Problems/Problem 11|Solution]]
 
[[1990 AJHSME Problems/Problem 11|Solution]]
Line 135: Line 167:
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
 +
The area of this figure is <math>100\text{ cm}^2</math>.  Its perimeter is
 +
 +
<asy>
 +
draw((0,2)--(2,2)--(2,1)--(3,1)--(3,0)--(1,0)--(1,1)--(0,1)--cycle,linewidth(1));
 +
draw((1,2)--(1,1)--(2,1)--(2,0),dashed);
 +
</asy>
 +
 +
<center><nowiki>[figure consists of four identical squares]</nowiki></center>
 +
 +
<math>\text{(A)}\ \text{20 cm} \qquad \text{(B)}\ \text{25 cm} \qquad \text{(C)}\ \text{30 cm} \qquad \text{(D)}\ \text{40 cm} \qquad \text{(E)} \text{50 cm}</math>
  
 
[[1990 AJHSME Problems/Problem 15|Solution]]
 
[[1990 AJHSME Problems/Problem 15|Solution]]
Line 155: Line 198:
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
 +
Each corner of a rectangular prism is cut off.  Two (of the eight) cuts are shown.  How many edges does the new figure have?
 +
 +
<asy>
 +
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
 +
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
 +
draw((3,3)--(5,5));
 +
draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1));
 +
draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1));
 +
</asy>
 +
 +
<math>\text{(A)}\ 24 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 42 \qquad \text{(E)}\ 48</math>
 +
 +
''Assume that the prism is a cube and that the cuts change each original face into a regular octagon.''
  
 
[[1990 AJHSME Problems/Problem 18|Solution]]
 
[[1990 AJHSME Problems/Problem 18|Solution]]

Revision as of 12:47, 24 June 2009

Problem 1

What is the smallest sum of two $3$-digit numbers that can be obtained by placing each of the six digits $4,5,6,7,8,9$ in one of the six boxes in this addition problem?

[asy] unitsize(12); draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2)); draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle); draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle); draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle); [/asy]

$\text{(A)}\ 947 \qquad \text{(B)}\ 1037 \qquad \text{(C)}\ 1047 \qquad \text{(D)}\ 1056 \qquad \text{(E)}\ 1245$

Solution

Problem 2

Which digit of $.12345$, when changed to $9$, gives the largest number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Solution

Problem 3

What fraction of the square is shaded?

[asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey); [/asy]

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ \frac{5}{12} \qquad \text{(D)}\ \frac{3}{7} \qquad \text{(E)}\ \frac{1}{2}$

Solution

Problem 4

Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

$\text{(A)}\ 1 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 8$

Solution

Problem 5

Which of the following is closest to the product $(.48017)(.48017)(.48017)$?

$\text{(A)}\ 0.011 \qquad \text{(B)}\ 0.110 \qquad \text{(C)}\ 1.10 \qquad \text{(D)}\ 11.0 \qquad \text{(E)}\ 110$

Solution

Problem 6

Which of these five numbers is the largest?

$\text{(A)}\ 13579+\frac{1}{2468} \qquad \text{(B)}\ 13579-\frac{1}{2468} \qquad \text{(C)}\ 13579\times \frac{1}{2468}$

$\text{(D)}\ 13579\div \frac{1}{2468} \qquad \text{(E)}\ 13579.2468$

Solution

Problem 7

When three different numbers from the set $\{ -3, -2, -1, 4, 5 \}$ are multiplied, the largest possible product is

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 60$

Solution

Problem 8

A dress originally priced at $80$ dollars was put on sale for $25\%$ off. If $10\%$ tax was added to the sale price, then the total selling price (in dollars) of the dress was

$\text{(A)}\ \text{45 dollars} \qquad \text{(B)}\ \text{52 dollars} \qquad \text{(C)}\ \text{54 dollars} \qquad \text{(D)}\ \text{66 dollars} \qquad \text{(E)}\ \text{68 dollars}$

Solution

Problem 9

The grading scale shown is used at Jones Junior High. The fifteen scores in Mr. Freeman's class were: \[\begin{tabular}[t]{lllllllll} 89, & 72, & 54, & 97, & 77, & 92, & 85, & 74, & 75, \\ 63, & 84, & 78, & 71, & 80, & 90. & & & \\ \end{tabular}\]

In Mr. Freeman's class, what percent of the students received a grade of C?

\[\boxed{\begin{tabular}[t]{cc} A: & 93 - 100 \\ B: & 85 - 92 \\ C: & 75 - 84 \\ D: & 70 - 74 \\ F: & 0 - 69  \end{tabular}}\]

$\text{(A)}\ 20\% \qquad \text{(B)}\ 25\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 33\frac{1}{3}\% \qquad \text{(E)}\ 40\%$

Solution

Problem 10

On this monthly calendar, the date behind one of the letters is added to the date behind $\text{C}$. If this sum equals the sum of the dates behind $\text{A}$ and $\text{B}$, then the letter is

[asy] unitsize(12); draw((1,1)--(23,1)); draw((0,5)--(23,5)); draw((0,9)--(23,9)); draw((0,13)--(23,13)); for(int a=0; a<6; ++a)  {   draw((4a+2,0)--(4a+2,14));  } label("Tues.",(4,14),N); label("Wed.",(8,14),N); label("Thurs.",(12,14),N); label("Fri.",(16,14),N); label("Sat.",(20,14),N); label("C",(12,10.3),N); label("$\textbf{A}$",(16,10.3),N); label("Q",(12,6.3),N); label("S",(4,2.3),N); label("$\textbf{B}$",(8,2.3),N); label("P",(12,2.3),N); label("T",(16,2.3),N); label("R",(20,2.3),N); [/asy]

$\text{(A)}\ \text{P} \qquad \text{(B)}\ \text{Q} \qquad \text{(C)}\ \text{R} \qquad \text{(D)}\ \text{S} \qquad \text{(E)}\ \text{T}$

Solution

Problem 11

The numbers on the faces of this cube are consecutive whole numbers. The sums of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is

[asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3)); draw((3,3)--(5,5)); label("$15$",(1.5,1.2),N); label("$11$",(4,2.3),N); label("$14$",(2.5,3.7),N); [/asy]

$\text{(A)}\ 75 \qquad \text{(B)}\ 76 \qquad \text{(C)}\ 78 \qquad \text{(D)}\ 80 \qquad \text{(E)}\ 81$

Solution

Problem 12

There are twenty-four $4$-digit numbers that use each of the four digits $2$, $4$, $5$, and $7$ exactly once. Listed in numerical order from smallest to largest, the number in the $17\text{th}$ position in the list is

$\text{(A)}\ 4527 \qquad \text{(B)}\ 5724 \qquad \text{(C)}\ 5742 \qquad \text{(D)}\ 7245 \qquad \text{(E)}\ 7524$

Solution

Problem 13

One proposal for new postage rates for a letter was $30$ cents for the first ounce and $22$ cents for each additional ounce (or fraction of an ounce). The postage for a letter weighing $4.5$ ounces was

$\text{(A)}\ \text{96 cents} \qquad \text{(B)}\ \text{1.07 dollars} \qquad \text{(C)}\ \text{1.18 dollars} \qquad \text{(D)}\ \text{1.20 dollars} \qquad \text{(E)}\ \text{1.40 dollars}$

Solution

Problem 14

A bag contains only blue balls and green balls. There are $6$ blue balls. If the probability of drawing a blue ball at random from this bag is $\frac{1}{4}$, then the number of green balls in the bag is

$\text{(A)}\ 12 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 30 \qquad \text{(E)}\ 36$

Solution

Problem 15

The area of this figure is $100\text{ cm}^2$. Its perimeter is

[asy] draw((0,2)--(2,2)--(2,1)--(3,1)--(3,0)--(1,0)--(1,1)--(0,1)--cycle,linewidth(1)); draw((1,2)--(1,1)--(2,1)--(2,0),dashed); [/asy]

[figure consists of four identical squares]

$\text{(A)}\ \text{20 cm} \qquad \text{(B)}\ \text{25 cm} \qquad \text{(C)}\ \text{30 cm} \qquad \text{(D)}\ \text{40 cm} \qquad \text{(E)} \text{50 cm}$

Solution

Problem 16

$1990-1980+1970-1960+\cdots -20+10 =$

$\text{(A)}\ -990 \qquad \text{(B)}\ -10 \qquad \text{(C)}\ 990 \qquad \text{(D)}\ 1000 \qquad \text{(E)}\ 1990$

Solution

Problem 17

A straight concrete sidewalk is to be $3$ feet wide, $60$ feet long, and $3$ inches thick. How many cubic yards of concrete must a contractor order for the sidewalk if concrete must be ordered in a whole number of cubic yards?

$\text{(A)}\ 2 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ \text{more than 20}$

Solution

Problem 18

Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have?

[asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3)); draw((3,3)--(5,5)); draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1)); draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1)); [/asy]

$\text{(A)}\ 24 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 42 \qquad \text{(E)}\ 48$

Assume that the prism is a cube and that the cuts change each original face into a regular octagon.

Solution

Problem 19

There are $120$ seats in a row. What is the fewest number of seats that must be occupied so the next person to be seated must sit next to someone?

$\text{(A)}\ 30 \qquad \text{(B)}\ 40 \qquad \text{(C)}\ 41 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 119$

Solution

Problem 20

The annual incomes of $1,000$ families range from $8200$ dollars to $98,000$ dollars. In error, the largest income was entered on the computer as $980,000$ dollars. The difference between the mean of the incorrect data and the mean of the actual data is

$\text{(A)}\ \text{882 dollars} \qquad \text{(B)}\ \text{980 dollars} \qquad \text{(C)}\ \text{1078 dollars} \qquad \text{(D)}\ \text{482,000 dollars} \qquad \text{(E)}\ \text{882,000 dollars}$

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also

1990 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1989 AJHSME
Followed by
1991 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions
Invalid username
Login to AoPS