Difference between revisions of "1992 AIME Problems/Problem 10"

(Undo revision 71030 by Starwars123 (talk))
(Undo revision 71029 by Starwars123 (talk))
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 +
== Solution ==
 +
Let <math>z=a+bi \implies \frac{z}{40}=\frac{a}{40}+\frac{b}{40}i</math>. Since <math>0\leq \frac{a}{40},\frac{b}{40}\leq 1</math> we have the inequality <cmath>0\leq a,b \leq 40</cmath>which is a square of side length <math>40</math>.
 +
 +
Also, <math>\frac{40}{\overline{z}}=\frac{40}{a-bi}=\frac{40a}{a^2+b^2}+\frac{40b}{a^2+b^2}i</math> so we have <math>0\leq a,b \leq \frac{a^2+b^2}{40}</math>, which leads to:<cmath>(a-20)^2+b^2\geq 20^2</cmath>
 +
<cmath>a^2+(b-20)^2\geq 20^2</cmath>
 +
 +
We graph them:
 +
 +
<center>[[Image:AIME_1992_Solution_10.png]]</center>
 +
 +
We want the area outside the two circles but inside the square. Doing a little geometry, the area of the intersection of those three graphs is <math>40^2-\frac{40^2}{4}-\frac{1}{2}\pi 20^2\approx 571.68</math>
  
 
<math>\boxed{572}</math>
 
<math>\boxed{572}</math>

Revision as of 13:37, 8 July 2015

Problem

Solution

Let $z=a+bi \implies \frac{z}{40}=\frac{a}{40}+\frac{b}{40}i$. Since $0\leq \frac{a}{40},\frac{b}{40}\leq 1$ we have the inequality \[0\leq a,b \leq 40\]which is a square of side length $40$.

Also, $\frac{40}{\overline{z}}=\frac{40}{a-bi}=\frac{40a}{a^2+b^2}+\frac{40b}{a^2+b^2}i$ so we have $0\leq a,b \leq \frac{a^2+b^2}{40}$, which leads to:\[(a-20)^2+b^2\geq 20^2\] \[a^2+(b-20)^2\geq 20^2\]

We graph them:

AIME 1992 Solution 10.png

We want the area outside the two circles but inside the square. Doing a little geometry, the area of the intersection of those three graphs is $40^2-\frac{40^2}{4}-\frac{1}{2}\pi 20^2\approx 571.68$

$\boxed{572}$