1993 AHSME Problems/Problem 30

Revision as of 20:09, 10 March 2015 by Mathgeek2006 (talk | contribs) (Problem)

Problem

Given $0\le x_0<1$, let \[x_n=\left\{ \begin{array}{ll} 2x_{n-1} &\text{ if }2x_{n-1}<1 \\ 2x_{n-1}-1 &\text{ if }2x_{n-1}\ge 1 \end{array}\right.\] for all integers $n>0$. For how many $x_0$ is it true that $x_0=x_5$?

$\text{(A) 0} \quad \text{(B) 1} \quad \text{(C) 5} \quad \text{(D) 31} \quad \text{(E) }\infty$

Solution

$\fbox{D}$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS