1994 AIME Problems/Problem 14

Revision as of 00:03, 28 December 2017 by Mastermind.hk16 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A beam of light strikes $\overline{BC}\,$ at point $C\,$ with angle of incidence $\alpha=19.94^\circ\,$ and reflects with an equal angle of reflection as shown. The light beam continues its path, reflecting off line segments $\overline{AB}\,$ and $\overline{BC}\,$ according to the rule: angle of incidence equals angle of reflection. Given that $\beta=\alpha/10=1.994^\circ\,$ and $AB=BC,\,$ determine the number of times the light beam will bounce off the two line segments. Include the first reflection at $C\,$ in your count.

AIME 1994 Problem 14.png

Solution

At each point of reflection, we pretend instead that the light continues to travel straight. [asy] pathpen = linewidth(0.7); size(250);  real alpha = 28, beta = 36;  pair B = MP("B",(0,0),NW), C = MP("C",D((1,0))), A = MP("A",expi(alpha * pi/180),N); path r = C + .4 * expi(beta * pi/180) -- C - 2*expi(beta * pi/180);  D(A--B--(1.5,0));D(r);D(anglemark(C,B,D(A)));D(anglemark((1.5,0),C,C+.4*expi(beta*pi/180)));MP("\beta",B,(5,1.2),fontsize(9));MP("\alpha",C,(4,1.2),fontsize(9)); for(int i = 0; i < 180/alpha; ++i){  path l = B -- (1+i/2)*expi(-i * alpha * pi / 180);  D(l, linetype("4 4"));  D(IP(l,r)); } D(B); [/asy] Note that after $k$ reflections (excluding the first one at $C$) the extended line will form an angle $k \beta$ at point $B$. For the $k$th reflection to be just inside or at point $B$, we must have $k\beta \le 180 - 2\alpha \Longrightarrow k \le \frac{180 - 2\alpha}{\beta} = 70.27$. Thus, our answer is, including the first intersection, $\left\lfloor \frac{180 - 2\alpha}{\beta} \right\rfloor + 1 = \boxed{071}$.

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS