Difference between revisions of "1994 AIME Problems/Problem 5"

(Solution)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
Note that <math>p(1)=p(11), p(2)=p(12), p(3)=p(13), \cdots p(19)=p(9)</math>, and <math>p(37)=3p(7)</math>. So <math>p(10)+p(11)+p(12)+\cdots +p(19)=46</math>, <math>p(10)+p(11)+\cdots +p(99)=46*45=2070</math>. We add <math>p(1)+p(2)+p(3)+\cdots +p(10)=45</math> to get 2115. When we add a digit we multiply the sum by that digit. Thus <math>S=2115\cdot (1+1+2+3+4+5+6+7+8+9)=2115\cdot 46=47\cdot 45\cdot 46</math>. The largest prime factor of that is <math>\boxed{47}</math>.
+
Note that <math>p(1)=p(11), p(2)=p(12), p(3)=p(13), \cdots p(19)=p(9)</math>, and <math>p(37)=3p(7)</math>. So <math>p(10)+p(11)+p(12)+\cdots +p(19)=46</math>, <math>p(10)+p(11)+\cdots +p(99)=46*45=2070</math>. We add <math>p(1)+p(2)+p(3)+\cdots +p(10)=45</math> to get 2115. When we add a digit we multiply the sum by that digit. Thus <math>2115\cdot (1+1+2+3+4+5+6+7+8+9)=2115\cdot 46=47\cdot 45\cdot 46</math>. But we didn't count 100, 200, 300, ..., 900. We add another 45 to get <math>45\cdot 2163</math>. The largest prime factor of that is <math>\boxed{103}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 14:22, 6 May 2008

Problem

Given a positive integer $n\,$, let $p(n)\,$ be the product of the non-zero digits of $n\,$. (If $n\,$ has only one digits, then $p(n)\,$ is equal to that digit.) Let

$S=p(1)+p(2)+p(3)+\cdots+p(999)$

.

What is the largest prime factor of $S\,$?

Solution

Note that $p(1)=p(11), p(2)=p(12), p(3)=p(13), \cdots p(19)=p(9)$, and $p(37)=3p(7)$. So $p(10)+p(11)+p(12)+\cdots +p(19)=46$, $p(10)+p(11)+\cdots +p(99)=46*45=2070$. We add $p(1)+p(2)+p(3)+\cdots +p(10)=45$ to get 2115. When we add a digit we multiply the sum by that digit. Thus $2115\cdot (1+1+2+3+4+5+6+7+8+9)=2115\cdot 46=47\cdot 45\cdot 46$. But we didn't count 100, 200, 300, ..., 900. We add another 45 to get $45\cdot 2163$. The largest prime factor of that is $\boxed{103}$.

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions